Masato Okada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2565532/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SRC kinase activator CDCP1 promotes hepatocyte growth factor–induced cell migration/invasion of a subset of breast cancer cells. Journal of Biological Chemistry, 2022, 298, 101630.	1.6	4
2	The Ragulator complex serves as a substrate-specific mTORC1 scaffold in regulating the nuclear translocation of transcription factor EB. Journal of Biological Chemistry, 2022, 298, 101744.	1.6	5
3	Clinical characteristics of patients with spondyloarthritis and inflammatory bowel disease versus inflammatory bowel disease-related arthritis. Rheumatology International, 2022, 42, 1751-1766.	1.5	5
4	Src activation in lipid rafts confers epithelial cells with invasive potential to escape from apical extrusion during cell competition. Current Biology, 2022, 32, 3460-3476.e6.	1.8	7
5	CDCP1 promotes compensatory renal growth by integrating Src and Met signaling. Life Science Alliance, 2021, 4, e202000832.	1.3	7
6	β-catenin-promoted cholesterol metabolism protects against cellular senescence in naked mole-rat cells. Communications Biology, 2021, 4, 357.	2.0	12
7	The lysosomal Ragulator complex plays an essential role in leukocyte trafficking by activating myosin II. Nature Communications, 2021, 12, 3333.	5.8	12
8	An infectivity-enhancing site on the SARS-CoV-2 spike protein targeted by antibodies. Cell, 2021, 184, 3452-3466.e18.	13.5	205
9	d-Serine Mediates Cellular Proliferation for Kidney Remodeling. Kidney360, 2021, 2, 1611-1624.	0.9	11
10	Clinical characteristics of non-radiographic versus radiographic axial spondyloarthritis in Asia and non-radiographic axial spondyloarthritis in other regions: results of the cross-sectional ASAS-COMOSPA study. RMD Open, 2021, 7, e001752.	1.8	11
11	Genetic dissection of Ragulator structure and function in amino acid-dependent regulation of mTORC1. Journal of Biochemistry, 2020, 168, 621-632.	0.9	1
12	Amino Acids Enhance Polyubiquitination of Rheb and Its Binding to mTORC1 by Blocking Lysosomal ATXN3 Deubiquitinase Activity. Molecular Cell, 2020, 80, 437-451.e6.	4.5	17
13	Atg5-mediated autophagy controls apoptosis/anoikis via p53/Rb pathway in naked mole-rat fibroblasts. Biochemical and Biophysical Research Communications, 2020, 528, 146-153.	1.0	9
14	Ubiquitination of Src promotes its secretion via small extracellular vesicles. Biochemical and Biophysical Research Communications, 2020, 525, 184-191.	1.0	10
15	Src mediates TGFâ€Î²â€induced intraocular pressure elevation in glaucoma. Journal of Cellular Physiology, 2019, 234, 1730-1744.	2.0	20
16	Clinical Characteristics of Patients with Spondyloarthritis in Japan in Comparison with Other Regions of the World. Journal of Rheumatology, 2019, 46, 896-903.	1.0	14
17	Lysosomal Protein Lamtor1 Controls Innate Immune Responses via Nuclear Translocation of Transcription Factor EB. Journal of Immunology, 2018, 200, 3790-3800.	0.4	16

#	Article	IF	CITATIONS
19	Structural basis for the assembly of the Ragulator-Rag GTPase complex. Nature Communications, 2017, 8, 1625.	5.8	55
20	Role of Ragulator in the Regulation of Mechanistic Target of Rapamycin Signaling in Podocytes and Glomerular Function. Journal of the American Society of Nephrology: JASN, 2016, 27, 3653-3665.	3.0	13
21	The Rho guanine nucleotide exchange factor ARHGEF5 promotes tumor malignancy via epithelial–mesenchymal transition. Oncogenesis, 2016, 5, e258-e258.	2.1	24
22	Polarization of M2 macrophages requires Lamtor1 that integrates cytokine and amino-acid signals. Nature Communications, 2016, 7, 13130.	5.8	114
23	Micro <scp>RNA</scp> â€27b suppresses tumor progression by regulating <scp>ARFGEF</scp> 1 and focal adhesion signaling. Cancer Science, 2016, 107, 28-35.	1.7	39
24	Fer tyrosine kinase oligomer mediates and amplifies Src-induced tumor progression. Oncogene, 2016, 35, 501-512.	2.6	21
25	MicroRNAs as the fine-tuners of Src oncogenic signalling. Journal of Biochemistry, 2015, 157, 431-438.	0.9	20
26	The mTOR Pathway Controls Cell Proliferation by Regulating the FoxO3a Transcription Factor via SGK1 Kinase. PLoS ONE, 2014, 9, e88891.	1.1	71
27	p18/LAMTOR1. Methods in Enzymology, 2014, 535, 249-263.	0.4	34
28	c-Src-induced activation of ceramide metabolism impairs membrane microdomains and promotes malignant progression by facilitating the translocation of c-Src to focal adhesions. Biochemical Journal, 2014, 458, 81-93.	1.7	19
29	Roles of Raft-Anchored Adaptor Cbp/PAG1 in Spatial Regulation of c-Src Kinase. PLoS ONE, 2014, 9, e93470.	1.1	6
30	The lysosomal signaling anchor p18/LAMTOR1 controls epidermal development by regulating lysosome-mediated catabolic processes. Journal of Cell Science, 2013, 126, 3575-84.	1.2	37
31	MiR-424/503-Mediated Rictor Upregulation Promotes Tumor Progression. PLoS ONE, 2013, 8, e80300.	1.1	65
32	The late endosome/lysosome-anchored p18-mTORC1 pathway controls terminal maturation of lysosomes. Biochemical and Biophysical Research Communications, 2012, 417, 1151-1157.	1.0	45
33	MicroRNA-mediated upregulation of integrin-linked kinase promotes Src-induced tumor progression. Oncogene, 2012, 31, 1623-1635.	2.6	61
34	Regulation of the Src Family Kinases by Csk. International Journal of Biological Sciences, 2012, 8, 1385-1397.	2.6	254
35	MIGâ€13 controls anteroposterior cell migration by interacting with UNCâ€71/ADMâ€1 and SRCâ€1 in <i>Caenorhabditis elegans</i> . FEBS Letters, 2012, 586, 740-746.	1.3	8
36	HIVâ€1 Nef perturbs the function, structure, and signaling of the Golgi through the Src Kinase Hck. Journal of Cellular Physiology, 2012, 227, 1090-1097.	2.0	18

#	Article	IF	CITATIONS
37	MicroRNA-mediated downregulation of mTOR/FGFR3 controls tumor growth induced by Src-related oncogenic pathways. Oncogene, 2011, 30, 3489-3501.	2.6	91
38	The guanine nucleotide exchange factor Arhgef5 plays crucial roles in Src-induced podosome formation. Journal of Cell Science, 2011, 124, 1726-1738.	1.2	56
39	The Transmembrane Adaptor Cbp/PAG1 Controls the Malignant Potential of Human Non–Small Cell Lung Cancers That Have c-Src Upregulation. Molecular Cancer Research, 2011, 9, 103-114.	1.5	30
40	Down-regulation of the Tumor Suppressor C-terminal Src Kinase (Csk)-binding Protein (Cbp)/PAG1 Is Mediated by Epigenetic Histone Modifications via the Mitogen-activated Protein Kinase (MAPK)/Phosphatidylinositol 3-Kinase (PI3K) Pathway. Journal of Biological Chemistry, 2011, 286, 15698-15706.	1.6	31
41	Purvalanol A, a CDK inhibitor, effectively suppresses Srcâ€mediated transformation by inhibiting both CDKs and c‧rc. Genes To Cells, 2010, 15, 1051-1062.	0.5	18
42	Transforming Potential of Src Family Kinases Is Limited by the Cholesterol-Enriched Membrane Microdomain. Molecular and Cellular Biology, 2009, 29, 6462-6472.	1.1	60
43	Nonâ€receptor tyrosine kinase CSKâ€1 controls pharyngeal muscle organization in <i>Caenorhabditis elegans</i> . Genes To Cells, 2009, 14, 381-393.	0.5	14
44	The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK–ERK pathway to late endosomes. EMBO Journal, 2009, 28, 477-489.	3.5	308
45	A versatile nonviral vector system for tetracycline-dependent one-step conditional induction of transgene expression. Gene Therapy, 2009, 16, 1383-1394.	2.3	11
46	Functional dissection of transformation by câ€&rc and vâ€&rc. Genes To Cells, 2008, 13, 1-12.	0.5	44
47	The Lipid Raft-Anchored Adaptor Protein Cbp Controls the Oncogenic Potential of c-Src. Molecular Cell, 2008, 30, 426-436.	4.5	113
48	Ablation of Csk in neural crest lineages causes corneal anomaly by deregulating collagen fibril organization and cell motility. Developmental Biology, 2008, 315, 474-488.	0.9	9
49	Proteomic identification of ZO-1/2 as a novel scaffold for Src/Csk regulatory circuit. Biochemical and Biophysical Research Communications, 2008, 366, 969-975.	1.0	23
50	Activation of c-Src and Fyn Kinases by Protein-tyrosine Phosphatase RPTPα Is Substrate-specific and Compatible with Lipid Raft Localization. Journal of Biological Chemistry, 2008, 283, 35815-35824.	1.6	39
51	Constitutive activation of neuronal Src causes aberrant dendritic morphogenesis in mouse cerebellar Purkinje cells. Neuroscience Research, 2007, 57, 210-219.	1.0	16
52	C-terminal Src kinase controls development and maintenance of mouse squamous epithelia. EMBO Journal, 2007, 26, 1234-1244.	3.5	41
53	Functional development of Src tyrosine kinases during evolution from a unicellular ancestor to multicellular animals. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12021-12026.	3.3	99
54	Role of Src family tyrosine kinases in the down-regulation of epidermal growth factor signaling in PC12 cells. Genes To Cells, 2005, 10, 1175-1187.	0.5	28

#	Article	IF	CITATIONS
55	SRC-1, a non-receptor type of protein tyrosine kinase, controls the direction of cell and growth cone migration in C. elegans. Development (Cambridge), 2005, 132, 5161-5172.	1.2	33
56	Mechanism of Csk-mediated Down-regulation of Src Family Tyrosine Kinases in Epidermal Growth Factor Signaling. Journal of Biological Chemistry, 2004, 279, 5975-5983.	1.6	37
57	Csk defines the ability of integrin-mediated cell adhesion and migration in human colon cancer cells: implication for a potential role in cancer metastasis. Oncogene, 2004, 23, 289-297.	2.6	44
58	Distinct roles of the Src family kinases, SRC-1 and KIN-22, that are negatively regulated by CSK-1 inC. elegans. FEBS Letters, 2003, 534, 133-138.	1.3	10
59	Transmembrane phosphoprotein Cbp senses cell adhesion signaling mediated by Src family kinase in lipid rafts. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14897-14902.	3.3	71
60	Structure of the Carboxyl-terminal Src Kinase, Csk. Journal of Biological Chemistry, 2002, 277, 14351-14354.	1.6	136
61	Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases. Nature, 2000, 404, 999-1003.	13.7	500
62	Adenovirus-mediated Overexpression of C-terminal Src Kinase (Csk) in Type I Astrocytes Interferes with Cell Spreading and Attachment to Fibronectin. Journal of Biological Chemistry, 1999, 274, 2291-2297.	1.6	31
63	Reduced C-terminal Src kinase (Csk) activities in hepatocellular carcinoma. Hepatology, 1999, 29, 379-384.	3.6	84
64	Influence of aging or left ventricular hypertrophy on the human heart: Contents of phosphorus metabolites measured by31P MRS. Magnetic Resonance in Medicine, 1998, 39, 772-782.	1.9	59
65	Essential roles of Lyn in fibronectin-mediated filamentous actin assembly and cell motility in mast cells. Journal of Immunology, 1998, 161, 3694-701.	0.4	31
66	Regulation of Src Family Kinases in the Developing Rat Brain: Correlation with Their Regulator Kinase, Csk1. Journal of Biochemistry, 1994, 116, 386-392.	0.9	23
67	Analysis of the binding of the Src homology 2 domain of Csk to tyrosine-phosphorylated proteins in the suppression and mitotic activation of c-Src Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 3984-3988.	3.3	237
68	Identification of major tyrosine-phosphorylated proteins in Csk-deficient cells. Oncogene, 1994, 9, 3571-8.	2.6	43
69	Constitutive activation of Src family kinases in mouse embryos that lack Csk. Cell, 1993, 73, 1125-1135.	13.5	407
70	Functional and physical interaction of protein-tyrosine kinases Fyn and Csk in the T-cell signaling system. Journal of Biological Chemistry, 1993, 268, 27413-9.	1.6	69
71	Activation of c-Src in cells bearing v-Crk and its suppression by Csk Molecular and Cellular Biology, 1992, 12, 4706-4713.	1.1	104
72	Molecular cloning and expression of chicken C-terminal Src kinase: lack of stable association with c-Src protein Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 2190-2194.	3.3	106

#	Article	IF	CITATIONS
73	Activation of c-Src in Cells Bearing v-Crk and Its Suppression by Csk. Molecular and Cellular Biology, 1992, 12, 4706-4713.	1.1	46
74	Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-src. Nature, 1991, 351, 69-72.	13.7	636
75	CSK: a protein-tyrosine kinase involved in regulation of src family kinases Journal of Biological Chemistry, 1991, 266, 24249-24252.	1.6	464
76	CSK: a protein-tyrosine kinase involved in regulation of src family kinases. Journal of Biological Chemistry, 1991, 266, 24249-52.	1.6	394
77	Identification of a novel protein tyrosine kinase that phosphorylates pp60c-src and regulates its activity in neonatal rat brain. Biochemical and Biophysical Research Communications, 1988, 154, 796-802.	1.0	45
78	Protein Tyrosine Kinase in Rat Brain: Neonatal Rat Brain Expresses Two Types of pp60c-src and a Novel Protein Tyrosine Kinase1. Journal of Biochemistry, 1988, 104, 297-305.	0.9	38