
Camille Boucher-Jacobs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2565348/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insertion Polymerization of Acrylate. Journal of the American Chemical Society, 2009, 131, 422-423.	13.7	261
2	Recent Trends in Catalytic Polymerizations. ACS Catalysis, 2019, 9, 11153-11188.	11.2	194
3	Tunable structural color of bottlebrush block copolymers through direct-write 3D printing from solution. Science Advances, 2020, 6, eaaz7202.	10.3	124
4	Synthesis of <i>p</i> -Xylene from Ethylene. Journal of the American Chemical Society, 2012, 134, 15708-15711.	13.7	117
5	Mechanistic Insights on Acrylate Insertion Polymerization. Journal of the American Chemical Society, 2010, 132, 4418-4426.	13.7	101
6	Kinetic Study of Living Ring-Opening Metathesis Polymerization with Third-Generation Grubbs Catalysts. Journal of the American Chemical Society, 2017, 139, 13644-13647.	13.7	84
7	General route to design polymer molecular weight distributions through flow chemistry. Nature Communications, 2020, 11, 3094.	12.8	83
8	Reactivity of Methacrylates in Insertion Polymerization. Journal of the American Chemical Society, 2010, 132, 16623-16630.	13.7	75
9	Macromolecules with programmable shape, size, and chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1538-1542.	7.1	70
10	Dilute solution structure of bottlebrush polymers. Soft Matter, 2019, 15, 2928-2941.	2.7	68
11	Synthesis and Characterization of Carbazolide-Based Iridium PNP Pincer Complexes. Mechanistic and Computational Investigation of Alkene Hydrogenation: Evidence for an Ir(III)/Ir(V)/Ir(III) Catalytic Cycle. Journal of the American Chemical Society, 2014, 136, 6672-6683.	13.7	63
12	Control of molecular weight in Ni(ii)-catalyzed polymerization via the reaction medium. Chemical Communications, 2008, , 4965.	4.1	62
13	Encapsulation of catalyst in block copolymer micelles for the polymerization of ethylene in aqueous medium. Nature Communications, 2018, 9, 841.	12.8	52
14	Engineering of Molecular Geometry in Bottlebrush Polymers. Macromolecules, 2019, 52, 4847-4857.	4.8	50
15	Mechanistic and Kinetic Studies of the Ring Opening Metathesis Polymerization of Norbornenyl Monomers by a Grubbs Third Generation Catalyst. Journal of the American Chemical Society, 2019, 141, 17918-17925.	13.7	46
16	Silane as Chain Transfer Agent for the Polymerization of Ethylene Catalyzed by a Palladium(II) Diimine Catalyst. ACS Catalysis, 2017, 7, 5717-5720.	11.2	31
17	Catalytic Polymerization in Dense CO ₂ to Controlled Microstructure Polyethylenes. Macromolecules, 2009, 42, 8157-8164.	4.8	30
18	Ethylene polymerization in supercritical carbon dioxide with binuclear nickel(ii) catalysts. Dalton Transactions, 2009, , 8929.	3.3	29

CAMILLE BOUCHER-JACOBS

#	Article	IF	CITATIONS
19	Materials Design of Highly Branched Bottlebrush Polymers at the Intersection of Modeling, Synthesis, Processing, and Characterization. Chemistry of Materials, 2022, 34, 1990-2024.	6.7	26
20	Catalytic synthesis of functionalized (polar and non-polar) polyolefin block copolymers. Chemical Science, 2018, 9, 4703-4707.	7.4	25
21	Water-Soluble Complexes [(κ2-P,O-Phosphinesulfonato)PdMe(L)] and Their Catalytic Properties. Organometallics, 2009, 28, 4072-4078.	2.3	24
22	Tandem Catalysts for Polyethylene Upcycling: A Simple Kinetic Model. Journal of Physical Chemistry A, 2020, 124, 3935-3942.	2.5	23
23	Challenges of Size-Exclusion Chromatography for the Analysis of Bottlebrush Polymers. Macromolecules, 2020, 53, 8610-8620.	4.8	23
24	Preparation and Characterization of Conjugated Polymers Made by Postpolymerization Reactions of Alternating Polyketones. Journal of the American Chemical Society, 2011, 133, 9658-9661.	13.7	20
25	Color, structure, and rheology of a diblock bottlebrush copolymer solution. Soft Matter, 2020, 16, 4919-4931.	2.7	19
26	Synthesis of telechelic polyolefins. Polymer Chemistry, 2021, 12, 5126-5138.	3.9	19
27	One-Pot Synthesis of Block Copolymers Containing a Polyolefin Block. Macromolecules, 2018, 51, 10167-10173.	4.8	16
28	Amphiphilic Triblock Copolymers Containing Polypropylene as the Middle Block. Angewandte Chemie - International Edition, 2020, 59, 22983-22988.	13.8	14
29	Polyethylene Containing Triblock Copolymers Synthesized by Post-polymerization Functionalization. Macromolecules, 2020, 53, 4338-4344.	4.8	12
30	Introduction of Highly Tunable End-Groups in Polyethylene via Chain-Transfer Polymerization using a Cobalt(III) Catalyst. Organometallics, 2019, 38, 788-796.	2.3	10
31	Ring-Opening Polymerization of Cyclic Esters in an Aqueous Dispersion. Macromolecules, 2020, 53, 7767-7773.	4.8	8
32	Implicit Side-Chain Model and Experimental Characterization of Bottlebrush Block Copolymer Solution Assembly. Macromolecules, 2021, 54, 3620-3633.	4.8	8
33	Concentration-Driven Self-Assembly of PS- <i>b</i> PLA Bottlebrush Diblock Copolymers in Solution. ACS Polymers Au, 2022, 2, 232-244.	4.1	8
34	Combination of olefin insertion polymerization and olefin metathesis to extend the topology and composition of polyolefins. Science China Chemistry, 2020, 63, 755-757.	8.2	6
35	Photophysical properties of soluble light-harvesting polyhydrofurans from post-polymerization functionalization of polyketones. European Polymer Journal, 2021, 147, 110302.	5.4	5
36	Mechanistic investigations on a homogeneous ruthenium Guerbet catalyst in a flow reactor. Reaction Chemistry and Engineering, 2022, 7, 711-718.	3.7	5

#	Article	IF	CITATIONS
37	Rapid, interface-driven domain orientation in bottlebrush diblock copolymer films during thermal annealing. Soft Matter, 2022, 18, 1666-1677.	2.7	5
38	<scp>PolyChemPrint</scp> : A hardware and software framework for benchtop additive manufacturing of functional polymeric materials. Journal of Polymer Science, 2021, 59, 2468-2478.	3.8	3
39	Solubility and activity of a phosphinosulfonate palladium catalyst in water with different surfactants. Polymer Chemistry, 2019, 10, 1988-1992.	3.9	2
40	Design rules for performing water-sensitive ring-opening polymerizations in an aqueous dispersion. Polymer Chemistry, 0, , .	3.9	2
41	Amphiphilic Triblock Copolymers Containing Polypropylene as the Middle Block. Angewandte Chemie, 2020, 132, 23183-23188.	2.0	0
42	Biphasic Seeded Emulsion Polymerization in a Tubular Flow Reactor. Industrial & Engineering Chemistry Research, 2020, 59, 10389-10396.	3.7	0
43	Immobilization and Study of Homogeneous Catalysts in a Continuous Flow Reactor Using Inorganic Particles Coated with Polymer. Catalysis Letters, 0, , .	2.6	Ο