
Farhad Vesuna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2565264/publications.pdf Version: 2024-02-01

FADHAD VESTINA

#	Article	IF	CITATIONS
1	Targeting host DEAD-box RNA helicase DDX3X for treating viral infections. Antiviral Research, 2021, 185, 104994.	4.1	19
2	Twist activates miR-22 to suppress estrogen receptor alpha in breast cancer. Molecular and Cellular Biochemistry, 2021, 476, 2295-2306.	3.1	13
3	Divergent organ-specific isogenic metastatic cell lines identified using multi-omics exhibit differential drug sensitivity. PLoS ONE, 2020, 15, e0242384.	2.5	3
4	Targeting DDX3 in Medulloblastoma Using the Small Molecule Inhibitor RK-33. Translational Oncology, 2019, 12, 96-105.	3.7	31
5	Targeting RNA helicase DDX3 in stem cell maintenance and teratoma formation. Genes and Cancer, 2019, 10, 11-20.	1.9	11
6	Global Effects of DDX3 Inhibition on Cell Cycle Regulation Identified by a Combined Phosphoproteomics and Single Cell Tracking Approach. Translational Oncology, 2018, 11, 755-763.	3.7	21
7	Targeting mitochondrial translation by inhibiting DDX3: a novel radiosensitization strategy for cancer treatment. Oncogene, 2018, 37, 63-74.	5.9	58
8	Combination treatment using DDX3 and PARP inhibitors induces synthetic lethality in BRCA1-proficient breast cancer. Medical Oncology, 2017, 34, 33.	2.5	23
9	Genomic pathways modulated by Twist in breast cancer. BMC Cancer, 2017, 17, 52.	2.6	15
10	Nuclear DDX3 expression predicts poor outcome in colorectal and breast cancer. OncoTargets and Therapy, 2017, Volume 10, 3501-3513.	2.0	22
11	Organ-specific isogenic metastatic breast cancer cell lines exhibit distinct Raman spectral signatures and metabolomes. Oncotarget, 2017, 8, 20266-20287.	1.8	41
12	Role of DDX3 in the pathogenesis of inflammatory bowel disease. Oncotarget, 2017, 8, 115280-115289.	1.8	9
13	RK-33 Radiosensitizes Prostate Cancer Cells by Blocking the RNA Helicase DDX3. Cancer Research, 2016, 76, 6340-6350.	0.9	56
14	Targeting <scp>DDX</scp> 3 with a small molecule inhibitor for lung cancer therapy. EMBO Molecular Medicine, 2015, 7, 648-669.	6.9	189
15	Identification of the DEAD box RNA helicase DDX3 as a therapeutic target in colorectal cancer. Oncotarget, 2015, 6, 28312-28326.	1.8	79
16	NZ51, a ring-expanded nucleoside analog, inhibits motility and viability of breast cancer cells by targeting the RNA helicase DDX3. Oncotarget, 2015, 6, 29901-29913.	1.8	45
17	miRNA expression patterns in normal breast tissue and invasive breast cancers of BRCA1 and BRCA2 germ-line mutation carriers. Oncotarget, 2015, 6, 32115-32137.	1.8	20
18	The Twist Box Domain Is Required for Twist1-induced Prostate Cancer Metastasis. Molecular Cancer Research, 2013, 11, 1387-1400.	3.4	79

Farhad Vesuna

#	Article	IF	CITATIONS
19	The Transcription Factor Encyclopedia. Genome Biology, 2012, 13, R24.	9.6	103
20	Twist contributes to hormone resistance in breast cancer by downregulating estrogen receptor-α. Oncogene, 2012, 31, 3223-3234.	5.9	135
21	GDPD5 inhibition alters the choline phospholipid metabolite profile of breast cancer cells toward a less malignant metabolic profile. Biomedical Spectroscopy and Imaging, 2012, 1, 3-15.	1.2	2
22	Glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5) expression correlates with malignant choline phospholipid metabolite profiles in human breast cancer. NMR in Biomedicine, 2012, 25, 1033-1042.	2.8	45
23	Novel, Broad Spectrum Anticancer Agents Containing the Tricyclic 5:7:5-Fused Diimidazodiazepine Ring System. ACS Medicinal Chemistry Letters, 2011, 2, 252-256.	2.8	53
24	Expression of DDX3 Is Directly Modulated by Hypoxia Inducible Factor-1 Alpha in Breast Epithelial Cells. PLoS ONE, 2011, 6, e17563.	2.5	37
25	Interleukin-6 induces an epithelial–mesenchymal transition phenotype in human breast cancer cells. Oncogene, 2009, 28, 2940-2947.	5.9	640
26	Twist Modulates Breast Cancer Stem Cells by Transcriptional Regulation of CD24 Expression. Neoplasia, 2009, 11, 1318-1328.	5.3	195
27	Peptides Derived from Type IV Collagen, CXC Chemokines, and Thrombospondin-1 Domain-Containing Proteins Inhibit Neovascularization and Suppress Tumor Growth in MDA-MB-231 Breast Cancer Xenografts. Neoplasia, 2009, 11, 1285-IN2.	5.3	58
28	Hypoxia-induced human endonuclease G expression suppresses tumor growth in a xenograft model. Cancer Gene Therapy, 2008, 15, 645-654.	4.6	6
29	Oncogenic role of DDX3 in breast cancer biogenesis. Oncogene, 2008, 27, 3912-3922.	5.9	184
30	Twist is a transcriptional repressor of E-cadherin gene expression in breast cancer. Biochemical and Biophysical Research Communications, 2008, 367, 235-241.	2.1	318
31	Hypoxia Regulates Choline Kinase Expression through Hypoxia-Inducible Factor-1α Signaling in a Human Prostate Cancer Model. Cancer Research, 2008, 68, 172-180.	0.9	124
32	Contributing factors of temozolomide resistance in MCF-7 tumor xenograft models. Cancer Biology and Therapy, 2007, 6, 891-897.	3.4	17
33	HOXA5 Regulates hMLH1 Expression in Breast Cancer Cells. Neoplasia, 2006, 8, 250-258.	5.3	26
34	Histamine: A potential therapeutic agent for breast cancer treatment?. Cancer Biology and Therapy, 2006, 5, 1472-1473.	3.4	5
35	Twist overexpression promotes chromosomal instability in the breast cancer cell line MCF-7. Cancer Genetics and Cytogenetics, 2006, 167, 189-191.	1.0	17
36	Enhanced green fluorescent protein as an alternative control reporter to Renilla luciferase. Analytical Biochemistry, 2005, 342, 345-347.	2.4	20

#	Article	IF	CITATIONS
37	Twist Overexpression Induces <i>In vivo</i> Angiogenesis and Correlates with Chromosomal Instability in Breast Cancer. Cancer Research, 2005, 65, 10801-10809.	0.9	257
38	Detection and Evaluation of Non-Recombinants in cDNA Libraries by Multiple Cloning Region PCR. BioTechniques, 2002, 32, 88-92.	1.8	0