Darin R Rokyta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2565130/publications.pdf Version: 2024-02-01

DADIN P. POKYTA

#	Article	IF	CITATIONS
1	An integrative view of the toxic potential of Conophis lineatus (Dipsadidae: Xenodontinae), a medically relevant rear-fanged snake. Toxicon, 2022, 205, 38-52.	0.8	3
2	Dynamic genetic differentiation drives the widespread structural and functional convergent evolution of snake venom proteinaceous toxins. BMC Biology, 2022, 20, 4.	1.7	17
3	Contrasting patterns of venom regeneration in a centipede (Scolopendra viridis) and a scorpion (Centruroides hentzi). Toxicon, 2022, 210, 132-140.	0.8	2
4	Venom Gene Sequence Diversity and Expression Jointly Shape Diet Adaptation in Pitvipers. Molecular Biology and Evolution, 2022, 39, .	3.5	8
5	De Novo Genome Assembly Highlights the Role of Lineage-Specific Gene Duplications in the Evolution of Venom in Fea's Viper (<i>Azemiops feae</i>). Genome Biology and Evolution, 2022, 14, .	1.1	5
6	Using Morphological, Genetic, and Venom Analyses to Present Current and Historic Evidence of Crotalus horridus x adamanteus Hybridization on Jekyll Island, Georgia. Southeastern Naturalist, 2022, 21, .	0.2	0
7	The Tiger Rattlesnake genome reveals a complex genotype underlying a simple venom phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	43
8	Electric Blue: Molecular Evolution of Three-Finger Toxins in the Long-Glanded Coral Snake Species Calliophis bivirgatus. Toxins, 2021, 13, 124.	1.5	9
9	Phylogenetically diverse diets favor more complex venoms in North American pitvipers. Proceedings of the United States of America, 2021, 118, .	3.3	48
10	The Chemosensory Repertoire of the Eastern Diamondback Rattlesnake (Crotalus adamanteus) Reveals Complementary Genetics of Olfactory and Vomeronasal-Type Receptors. Journal of Molecular Evolution, 2021, 89, 313-328.	0.8	4
11	ToxCodAn: a new toxin annotator and guide to venom gland transcriptomics. Briefings in Bioinformatics, 2021, 22, .	3.2	9
12	ldentification and Characterization of Novel Proteins from Arizona Bark Scorpion Venom That Inhibit Nav1.8, a Voltage-Gated Sodium Channel Regulator of Pain Signaling. Toxins, 2021, 13, 501.	1.5	4
13	Experimental Manipulation of Corticosterone Does Not Affect Venom Composition or Functional Activity in Free-Ranging Rattlesnakes. Physiological and Biochemical Zoology, 2021, 94, 286-301.	0.6	0
14	Varying Intensities of Introgression Obscure Incipient Venom-Associated Speciation in the Timber Rattlesnake (Crotalus horridus). Toxins, 2021, 13, 782.	1.5	5
15	Venom Peptides with Dual Modulatory Activity on the Voltage-Gated Sodium Channel Na _V 1.1 Provide Novel Leads for Development of Antiepileptic Drugs. ACS Pharmacology and Translational Science, 2020, 3, 119-134.	2.5	14
16	Gradual and Discrete Ontogenetic Shifts in Rattlesnake Venom Composition and Assessment of Hormonal and Ecological Correlates. Toxins, 2020, 12, 659.	1.5	7
17	Size Matters: An Evaluation of the Molecular Basis of Ontogenetic Modifications in the Composition of Bothrops jararacussu Snake Venom. Toxins, 2020, 12, 791.	1.5	18
18	Drift, selection and adaptive variation in small populations of a threatened rattlesnake. Molecular Ecology, 2020, 29, 2612-2625.	2.0	8

DARIN R ROKYTA

#	Article	IF	CITATIONS
19	Trait differentiation and modular toxin expression in palm-pitvipers. BMC Genomics, 2020, 21, 147.	1.2	18
20	Intraspecific sequence and gene expression variation contribute little to venom diversity in sidewinder rattlesnakes (<i>Crotalus cerastes</i>). Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190810.	1.2	16
21	Sex-based venom variation in the eastern bark centipede (Hemiscolopendra marginata). Toxicon, 2019, 169, 45-58.	0.8	9
22	Convergent recruitment of adamalysin-like metalloproteases in the venom of the red bark centipede (Scolopocryptops sexspinosus). Toxicon, 2019, 168, 1-15.	0.8	8
23	No Cost of Complexity in Bacteriophages Adapting to a Complex Environment. Genetics, 2019, 212, 267-276.	1.2	3
24	Biophysical Spandrels form a Hot-Spot for Kosmotropic Mutations in Bacteriophage Thermal Adaptation. Journal of Molecular Evolution, 2019, 87, 27-36.	0.8	2
25	Tipping the Scales: The Migration–Selection Balance Leans toward Selection in Snake Venoms. Molecular Biology and Evolution, 2019, 36, 271-282.	3.5	16
26	Molecular mechanisms underlying intraspecific variation in snake venom. Journal of Proteomics, 2018, 181, 60-72.	1.2	54
27	A Single Mutation Unlocks Cascading Exaptations in the Origin of a Potent Pitviper Neurotoxin. Molecular Biology and Evolution, 2018, 35, 887-898.	3.5	26
28	Additive Phenotypes Underlie Epistasis of Fitness Effects. Genetics, 2018, 208, 339-348.	1.2	22
29	Venom-gland transcriptomics and venom proteomics of the Hentz striped scorpion (Centruroides) Tj ETQq1 1 C 14-29.	0.784314 r 0.8	gBT /Overlo 46
30	Evidence for divergent patterns of local selection driving venom variation in Mojave Rattlesnakes (Crotalus scutulatus). Scientific Reports, 2018, 8, 17622.	1.6	42
31	Comparative venom-gland transcriptomics and venom proteomics of four Sidewinder Rattlesnake (Crotalus cerastes) lineages reveal little differential expression despite individual variation. Scientific Reports, 2018, 8, 15534.	1.6	41
32	Three-Finger Toxin Diversification in the Venoms of Cat-Eye Snakes (Colubridae: Boiga). Journal of Molecular Evolution, 2018, 86, 531-545.	0.8	14
33	Local prey community composition and genetic distance predict venom divergence among populations of the northern Pacific rattlesnake (<i>Crotalus oreganus</i>). Journal of Evolutionary Biology, 2018, 31, 1513-1528.	0.8	29
34	Phenotypic Variation in Mojave Rattlesnake (Crotalus scutulatus) Venom Is Driven by Four Toxin Families. Toxins, 2018, 10, 135.	1.5	32
35	Evaluating the Performance of De Novo Assembly Methods for Venom-Gland Transcriptomics. Toxins, 2018, 10, 249.	1.5	54

 $_{36}$ Female-biased population divergence in the venom of the Hentz striped scorpion (Centruroides) Tj ETQq0 0 0 rgBT $_{0.8}^{O}$ verlock 10 Tf 50 6

DARIN R ROKYTA

#	Article	IF	CITATIONS
37	Venom-gland transcriptomics and venom proteomics of the giant Florida blue centipede, Scolopendra viridis. Toxicon, 2018, 152, 121-136.	0.8	19
38	Venom-gland transcriptomics and venom proteomics of the black-back scorpion (Hadrurus spadix) reveal detectability challenges and an unexplored realm of animal toxin diversity. Toxicon, 2017, 128, 23-37.	0.8	51
39	Selection To Increase Expression, Not Sequence Diversity, Precedes Gene Family Origin and Expansion in Rattlesnake Venom. Genetics, 2017, 206, 1569-1580.	1.2	37
40	Mutation-Driven Parallel Evolution during Viral Adaptation. Molecular Biology and Evolution, 2017, 34, 3243-3253.	3.5	39
41	Quantity, Not Quality: Rapid Adaptation in a Polygenic Trait Proceeded Exclusively through Expression Differentiation. Molecular Biology and Evolution, 2017, 34, 3099-3110.	3.5	64
42	The genetics of venom ontogeny in the eastern diamondback rattlesnake (<i>Crotalus) Tj ETQq0 0 0 rgBT /Over</i>	lock 10 Tf	50,542 Td (ad
43	Expression Differentiation Is Constrained to Low-Expression Proteins over Ecological Timescales. Genetics, 2016, 202, 273-283.	1.2	19
44	Functional characterizations of venom phenotypes in the eastern diamondback rattlesnake (Crotalus) Tj ETQqO Toxicon, 2016, 119, 28-38.	0 0 rgBT /0 0.8	Overlock 10 T 25
45	Synergistic Pleiotropy Overrides the Costs of Complexity in Viral Adaptation. Genetics, 2016, 202, 285-295.	1.2	45
46	Viral recombination blurs taxonomic lines: examination of single-stranded DNA viruses in a wastewater treatment plant. PeerJ, 2016, 4, e2585.	0.9	25
47	Phenotypic integration in the feeding system of the eastern diamondback rattlesnake (<i>Crotalus) Tj ETQq1 1 (</i>	0.784314 2.0	rg ${ t BT}_8/{ ext{Overloc}}$
48	Post-transcriptional Mechanisms Contribute Little to Phenotypic Variation in Snake Venoms. G3: Genes, Genomes, Genetics, 2015, 5, 2375-2382.	0.8	68
49	Establishment of the Adventive Centipede <i>Rhysida longipes longipes</i> (Newport, 1845;) Tj ETQq1 1 0.7843 979-980.	14 rgBT /C 0.2	overlock 10 Tf O
50	Early significant ontogenetic changes in snake venoms. Toxicon, 2015, 96, 74-81.	0.8	25
51	Contrasting Modes and Tempos of Venom Expression Evolution in Two Snake Species. Genetics, 2015, 199, 165-176.	1.2	44
52	The transcriptomic and proteomic basis for the evolution of a novel venom phenotype within the Timber Rattlesnake (Crotalus horridus). Toxicon, 2015, 98, 34-48.	0.8	73
53	Intergenic incompatibilities reduce fitness in hybrids of extremely closely related bacteriophages. PeerJ, 2015, 3, e1320.	0.9	14
54	RNA-seq and high-definition mass spectrometry reveal the complex and divergent venoms of two rear-fanged colubrid snakes. BMC Genomics, 2014, 15, 1061.	1.2	50

DARIN R ROKYTA

#	Article	IF	CITATIONS
55	Payoffs, Not Tradeoffs, in the Adaptation of a Virus to Ostensibly Conflicting Selective Pressures. PLoS Genetics, 2014, 10, e1004611.	1.5	27
56	Environment Determines Epistatic Patterns for a ssDNA Virus. Genetics, 2014, 196, 267-279.	1.2	25
57	Linking the transcriptome and proteome to characterize the venom of the eastern diamondback rattlesnake (Crotalus adamanteus). Journal of Proteomics, 2014, 96, 145-158.	1.2	92
58	The genesis of an exceptionally lethal venom in the timber rattlesnake (Crotalus horridus) revealed through comparative venom-gland transcriptomics. BMC Genomics, 2013, 14, 394.	1.2	95
59	The venom-gland transcriptome of the eastern coral snake (Micrurus fulvius) reveals high venom complexity in the intragenomic evolution of venoms. BMC Genomics, 2013, 14, 531.	1.2	114
60	The Adaptive Potential of Hybridization Demonstrated with Bacteriophages. Journal of Molecular Evolution, 2013, 77, 221-230.	0.8	11
61	Report from the First Snake Genomics and Integrative Biology Meeting. Standards in Genomic Sciences, 2012, 7, 150-152.	1.5	4
62	The venom-gland transcriptome of the eastern diamondback rattlesnake (Crotalus adamanteus). BMC Genomics, 2012, 13, 312.	1.2	250
63	The Consistency of Beneficial Fitness Effects of Mutations across Diverse Genetic Backgrounds. PLoS ONE, 2012, 7, e43864.	1.1	16
64	A high-throughput venom-gland transcriptome for the Eastern Diamondback Rattlesnake (Crotalus) Tj ETQq0 0 657-671.	0 rgBT /O\ 0.8	verlock 10 Tf 5 116
65	Epistasis between Beneficial Mutations and the Phenotype-to-Fitness Map for a ssDNA Virus. PLoS Genetics, 2011, 7, e1002075.	1.5	88
66	Genic Incompatibilities in Two Hybrid Bacteriophages. Molecular Biology and Evolution, 2009, 26, 2831-2839.	3.5	24
67	The Genetics of Adaptation for Eight Microvirid Bacteriophages. Journal of Molecular Evolution, 2009, 69, 229-239.	0.8	65
68	Beneficial Fitness Effects Are Not Exponential for Two Viruses. Journal of Molecular Evolution, 2008, 67, 368-376.	0.8	97
69	A General Extreme Value Theory Model for the Adaptation of DNA Sequences Under Strong Selection and Weak Mutation. Genetics, 2008, 180, 1627-1643.	1.2	72
70	Testing the Extreme Value Domain of Attraction for Distributions of Beneficial Fitness Effects. Genetics, 2007, 176, 2441-2449.	1.2	53
71	Properties of adaptive walks on uncorrelated landscapes under strong selection and weak mutation. Journal of Theoretical Biology, 2006, 243, 114-120.	0.8	37
72	Horizontal Gene Transfer and the Evolution of Microvirid Coliphage Genomes. Journal of Bacteriology, 2006, 188, 1134-1142.	1.0	106

#	ARTICLE	IF	CITATIONS
73	An empirical test of the mutational landscape model of adaptation using a single-stranded DNA virus. Nature Genetics, 2005, 37, 441-444.	9.4	172
74	Experimental Genomic Evolution: Extensive Compensation for Loss of DNA Ligase Activity in a Virus. Molecular Biology and Evolution, 2002, 19, 230-238.	3.5	65