
S Ravi P Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2565091/publications.pdf Version: 2024-02-01

<u>ς Ρλυί Ρ ςιινλ</u>

#	Article	IF	CITATIONS
1	Raman spectroscopy on amorphous carbon films. Journal of Applied Physics, 1996, 80, 440-447.	1.1	1,201
2	Low-threshold cold cathodes made of nitrogen-doped chemical-vapour-deposited diamond. Nature, 1996, 381, 140-141.	13.7	539
3	Nitrogen containing hydrogenated amorphous carbon for thinâ€film field emission cathodes. Applied Physics Letters, 1996, 68, 2529-2531.	1.5	478
4	From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties. Nanoscale, 2014, 6, 235-247.	2.8	352
5	Influence of ion energy and substrate temperature on the optical and electronic properties of tetrahedral amorphous carbon (ta-C) films. Journal of Applied Physics, 1997, 81, 139-145.	1.1	344
6	Nitrogen modification of hydrogenated amorphous carbon films. Journal of Applied Physics, 1997, 81, 2626-2634.	1.1	333
7	Properties of carbon ion deposited tetrahedral amorphous carbon films as a function of ion energy. Journal of Applied Physics, 1996, 79, 7234-7240.	1.1	294
8	Hardness, elastic modulus, and structure of very hard carbon films produced by cathodicâ€arc deposition with substrate pulse biasing. Applied Physics Letters, 1996, 68, 779-781.	1.5	255
9	Role of the Exposed Polar Facets in the Performance of Thermally and UV Activated ZnO Nanostructured Gas Sensors. Journal of Physical Chemistry C, 2013, 117, 17850-17858.	1.5	249
10	Polyurea-Functionalized Multiwalled Carbon Nanotubes:  Synthesis, Morphology, and Raman Spectroscopy. Journal of Physical Chemistry B, 2005, 109, 11925-11932.	1.2	227
11	Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon, 2009, 47, 2152-2160.	5.4	225
12	Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films. Physical Review B, 2005, 72, .	1.1	220
13	Large-area synthesis of carbon nanofibres at room temperature. Nature Materials, 2002, 1, 165-168.	13.3	204
14	Tetrahedral amorphous carbon films prepared by magnetron sputtering and dc ion plating. Journal of Applied Physics, 1996, 79, 1416-1422.	1.1	195
15	Higher Dispersion Efficacy of Functionalized Carbon Nanotubes in Chemical and Biological Environments. ACS Nano, 2010, 4, 2615-2626.	7.3	189
16	Triboelectric nanogenerators: providing a fundamental framework. Energy and Environmental Science, 2017, 10, 1801-1811.	15.6	186
17	Photoluminescence and Raman spectroscopy in hydrogenated carbon films. IEEE Transactions on Magnetics, 1997, 33, 3148-3150.	1.2	180
18	Mechanical properties and Raman spectra of tetrahedral amorphous carbon films with high sp ³ fraction deposited using a filtered cathodic arc. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1997, 76, 351-361.	0.6	173

#	Article	IF	CITATIONS
19	Critical review of recent progress of flexible perovskite solar cells. Materials Today, 2020, 39, 66-88.	8.3	169
20	High sensitivity organic inorganic hybrid X-ray detectors with direct transduction and broadband response. Nature Communications, 2018, 9, 2926.	5.8	166
21	Platinum Integrated Graphene for Methanol Fuel Cells. Journal of Physical Chemistry C, 2010, 114, 15837-15841.	1.5	163
22	Characterization of a :H:N deposition from CH4/N2 rf plasmas using optical emission spectroscopy. Journal of Applied Physics, 1996, 79, 7227-7233.	1.1	147
23	â€~Inorganics-in-Organics': recent developments and outlook for 4G polymer solar cells. Nanoscale, 2013, 5, 8411.	2.8	147
24	Drug loading, dispersion stability, and therapeutic efficacy in targeted drug delivery with carbon nanotubes. Carbon, 2012, 50, 622-632.	5.4	144
25	A flexible metallic <scp>TiC</scp> nanofiber/vertical graphene <scp>1D</scp> / <scp>2D</scp> heterostructured as active electrocatalyst for advanced <scp>Li–S</scp> batteries. InformaÄnÃ- Materiály, 2021, 3, 790-803.	8.5	142
26	Iron filled single-wall carbon nanotubes – A novel ferromagnetic medium. Chemical Physics Letters, 2006, 421, 129-133.	1.2	130
27	Carbon nanotubes: a multi-functional material for organic optoelectronics. Journal of Materials Chemistry, 2008, 18, 1183.	6.7	130
28	Stable Hollowâ€Structured Silicon Suboxideâ€Based Anodes toward Highâ€Performance Lithiumâ€lon Batteries. Advanced Functional Materials, 2021, 31, 2101796.	7.8	127
29	Vertically aligned graphene nanosheets on multi-yolk/shell structured TiC@C nanofibers for stable Li–S batteries. Energy Storage Materials, 2020, 27, 159-168.	9.5	124
30	Recent progress in silver nanowire networks for flexible organic electronics. Journal of Materials Chemistry C, 2020, 8, 4636-4674.	2.7	122
31	Novel Catalysts, Room Temperature, and the Importance of Oxygen for the Synthesis of Single-Walled Carbon Nanotubes. Nano Letters, 2005, 5, 1209-1215.	4.5	120
32	On-chip Fabrication of High Performance Nanostructured ZnO UV Detectors. Scientific Reports, 2015, 5, 8516.	1.6	120
33	Stress-induced formation of high-density amorphous carbon thin films. Journal of Applied Physics, 1997, 82, 6024-6030.	1.1	116
34	A study of electron field emission as a function of film thickness from amorphous carbon films. Applied Physics Letters, 1998, 73, 3784-3786.	1.5	109
35	Resonant tunnelling and fast switching in amorphous-carbon quantum-well structures. Nature Materials, 2006, 5, 19-22.	13.3	107
36	Nitrogen doping of amorphous carbon thin films. Journal of Applied Physics, 1998, 84, 2071-2081.	1.1	105

#	Article	IF	CITATIONS
37	Flexible carbon nanofiber film with diatomic Fe-Co sites for efficient oxygen reduction and evolution reactions in wearable zinc-air batteries. Nano Energy, 2021, 87, 106147.	8.2	103
38	Hybrid Carbon Nanotube Networks as Efficient Hole Extraction Layers for Organic Photovoltaics. ACS Nano, 2013, 7, 556-565.	7.3	102
39	Lithium–Sulfur Batteries Meet Electrospinning: Recent Advances and the Key Parameters for High Gravimetric and Volume Energy Density. Advanced Science, 2022, 9, e2103879.	5.6	98
40	Ultra-broadband light trapping using nanotextured decoupled graphene multilayers. Science Advances, 2016, 2, e1501238.	4.7	97
41	Nanostructured Copper Phthalocyanine-Sensitized Multiwall Carbon Nanotube Films. Langmuir, 2007, 23, 6424-6430.	1.6	96
42	A unified theoretical model for Triboelectric Nanogenerators. Nano Energy, 2018, 48, 391-400.	8.2	96
43	Electron field emission from a single carbon nanotube: Effects of anode location. Applied Physics Letters, 2005, 87, 103112.	1.5	95
44	First human trials of a dry electrophysiology sensor using a carbon nanotube array interface. Sensors and Actuators A: Physical, 2008, 144, 275-279.	2.0	95
45	Interpenetrating multiwall carbon nanotube electrodes for organic solar cells. Applied Physics Letters, 2006, 89, 133117.	1.5	94
46	Structural and optoelectronic properties of C60 rods obtained via a rapid synthesis route. Journal of Materials Chemistry, 2006, 16, 3715.	6.7	94
47	Origin of electric field enhancement in field emission from amorphous carbon thin films. Applied Physics Letters, 2001, 78, 2339-2341.	1.5	93
48	Oxidised carbon nanotubes as solution processable, high work function hole-extraction layers for organic solar cells. Organic Electronics, 2009, 10, 388-395.	1.4	90
49	Evidence for a New Twoâ€Dimensional C ₄ Hâ€Type Polymer Based on Hydrogenated Graphene. Advanced Materials, 2011, 23, 4497-4503.	11.1	90
50	Nature of Power Generation and Output Optimization Criteria for Triboelectric Nanogenerators. Advanced Energy Materials, 2018, 8, 1802190.	10.2	90
51	Structure and luminescence properties of an amorphous hydrogenated carbon. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1996, 74, 369-386.	0.6	89
52	Electron-energy-loss spectroscopy characterization of thesp2bonding fraction within carbon thin films. Physical Review B, 2000, 62, 12628-12631.	1.1	89
53	Hybrid Grapheneâ€Metal Oxide Solution Processed Electron Transport Layers for Large Area Highâ€Performance Organic Photovoltaics. Advanced Materials, 2014, 26, 2078-2083.	11.1	86
54	Thermal expansion coefficient of hydrogenated amorphous carbon. Applied Physics Letters, 2003, 83, 3099-3101.	1.5	85

#	Article	IF	CITATIONS
55	Disorder, clustering, and localization effects in amorphous carbon. Physical Review B, 2004, 70, .	1.1	82
56	A dry electrophysiology electrode using CNT arrays. Sensors and Actuators A: Physical, 2006, 132, 34-41.	2.0	82
57	Self-texturing of nitrogenated amorphous carbon thin films for electron field emission. Applied Physics Letters, 1997, 71, 1477-1479.	1.5	81
58	Low temperature growth of carbon nanotubes – A review. Carbon, 2020, 158, 24-44.	5.4	80
59	EPR linewidth variation, spin relaxation times, and exchange in amorphous hydrogenated carbon. Physical Review B, 2000, 61, 3546-3554.	1.1	79
60	Influence of sp2 clusters on the field emission properties of amorphous carbon thin films. Applied Physics Letters, 2000, 77, 2006-2008.	1.5	79
61	The importance of oxygen-containing defects on carbon nanotubes for the detection of polar and non-polar vapours through hydrogen bond formation. Nanotechnology, 2007, 18, 175701.	1.3	79
62	Characterization of carbon nanotube (MWCNT) containing P(3HB)/bioactive glass composites for tissue engineering applications. Acta Biomaterialia, 2010, 6, 735-742.	4.1	79
63	Low temperature growth of carbon nanotubes on carbon fibre to create a highly networked fuzzy fibre reinforced composite with superior electrical conductivity. Carbon, 2014, 74, 319-328.	5.4	79
64	Charge transport effects in field emission from carbon nanotube-polymer composites. Applied Physics Letters, 2005, 87, 263105.	1.5	78
65	Formation of low-temperature self-organized nanoscale nickel metal islands. Nanotechnology, 2003, 14, 1223-1227.	1.3	77
66	Electronic properties of semiconducting diamond-like carbon-diamond. Thin Solid Films, 1992, 212, 232-239.	0.8	76
67	Field emission from nonaligned carbon nanotubes embedded in a polystyrene matrix. Applied Physics Letters, 2002, 80, 3189-3191.	1.5	76
68	Multi-Functional Carbon Fibre Composites using Carbon Nanotubes as an Alternative to Polymer Sizing. Scientific Reports, 2016, 6, 37334.	1.6	76
69	Photoluminescence Quenching in Carbon Nanotubeâ€Polymer/Fullerene Films: Carbon Nanotubes as Exciton Dissociation Centres in Organic Photovoltaics. Advanced Materials, 2011, 23, 3796-3800.	11.1	74
70	Solution processed reduced graphene oxide/metal oxide hybrid electron transport layers for highly efficient polymer solar cells. Journal of Materials Chemistry A, 2013, 1, 9922.	5.2	74
71	Quantum Biology: An Update and Perspective. Quantum Reports, 2021, 3, 80-126.	0.6	74
72	Doping of rf plasma deposited diamond-like carbon films. Thin Solid Films, 1995, 270, 194-199.	0.8	73

#	Article	IF	CITATIONS
73	Disentanglement of the electronic properties of metallicity-selected single-walled carbon nanotubes. Physical Review B, 2009, 80, .	1.1	73
74	Confined Crystals of the Smallest Phase-Change Material. Nano Letters, 2013, 13, 4020-4027.	4.5	73
75	Carbon Materials in Perovskite Solar Cells: Prospects and Future Challenges. Energy and Environmental Materials, 2019, 2, 107-118.	7.3	72
76	Solution-processable graphene oxide as an efficient hole injection layer for high luminance organic light-emitting diodes. Journal of Materials Chemistry C, 2013, 1, 1708.	2.7	71
77	Novel nanoparticles with Cr ³⁺ substituted ferrite for self-regulating temperature hyperthermia. Nanoscale, 2017, 9, 13929-13937.	2.8	71
78	Room temperature photoluminescence from nanostructured amorphous carbon. Applied Physics Letters, 2004, 85, 6236-6238.	1.5	70
79	Properties of nitrogen doped tetrahedral amorphous carbon films prepared by filtered cathodic vacuum arc technique. Journal of Non-Crystalline Solids, 1998, 242, 40-48.	1.5	68
80	Maximizing the electron field emission performance of carbon nanotube arrays. Applied Physics Letters, 2009, 94, 133104.	1.5	68
81	Synthesis, structure and applications of amorphous diamond. Thin Solid Films, 1991, 206, 198-203.	0.8	67
82	Water-soluble multiwall-carbon-nanotube-polythiophene composite for bilayer photovoltaics. Applied Physics Letters, 2006, 89, 123115.	1.5	67
83	Carbon nanotubes grown on In2O3:Sn glass as large area electrodes for organic photovoltaics. Applied Physics Letters, 2007, 90, 023105.	1.5	66
84	Screening the Missing Electron: Nanochemistry in Action. Physical Review Letters, 2009, 102, 046804.	2.9	64
85	Tuning the work function of surface oxidised multi-wall carbon nanotubes via cation exchange. Chemical Physics Letters, 2007, 434, 92-95.	1.2	62
86	Formation of hollow MoS2/carbon microspheres for high capacity and high rate reversible alkali-ion storage. Journal of Materials Chemistry A, 2018, 6, 8280-8288.	5.2	62
87	Properties of cadmium sulphide films grown by single-source metalorganic chemical vapour deposition with dithiocarbamate precursors. Journal of Crystal Growth, 1996, 167, 133-142.	0.7	61
88	Effect of aspect ratio and anode location on the field emission properties of a single tip based emitter. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 632.	1.6	61
89	Metal nanoparticle production by pulsed laser nanostructuring of thin metal films. Applied Surface Science, 2007, 253, 8080-8085.	3.1	60
90	The band structure of graphene oxide examined using photoluminescence spectroscopy. Journal of Materials Chemistry C, 2015, 3, 12484-12491.	2.7	60

#	Article	IF	CITATIONS
91	Photoluminescence in amorphous carbon thin films and its relation to the microscopic properties. Thin Solid Films, 1995, 270, 160-164.	0.8	58
92	ZnO Nanodisk Based UV Detectors with Printed Electrodes. Langmuir, 2014, 30, 3913-3921.	1.6	58
93	Exploring the theoretical and experimental optimization of high-performance triboelectric nanogenerators using microarchitectured silk cocoon films. Nano Energy, 2020, 74, 104882.	8.2	58
94	Evidence of hexagonal diamond in plasma-deposited carbon films. Journal of Materials Science, 1994, 29, 4962-4966.	1.7	57
95	Operation of a reversed pentacene-fullerene discrete heterojunction photovoltaic device. Applied Physics Letters, 2007, 90, 113505.	1.5	56
96	Dynamics of confined plumes during short and ultrashort pulsed laser ablation of graphite. Physical Review B, 2005, 72, .	1.1	55
97	Intrinsic Gain in Self-Aligned Polysilicon Source-Gated Transistors. IEEE Transactions on Electron Devices, 2010, 57, 2434-2439.	1.6	55
98	Generation of Chemically Unmodified Pure Single-Walled Carbon Nanotubes by Solubilizing with RNA and Treatment with Ribonuclease A. Advanced Materials, 2006, 18, 1598-1602.	11.1	54
99	Catalyst and Chirality Dependent Growth of Carbon Nanotubes Determined Through Nanoâ€Test Tube Chemistry. Advanced Materials, 2010, 22, 3685-3689.	11.1	54
100	Optical properties of amorphous C/diamond thin films. Journal of Applied Physics, 1992, 72, 1149-1153.	1.1	53
101	Growth of carbon nanotubes at temperatures compatible with integrated circuit technologies. Carbon, 2011, 49, 280-285.	5.4	53
102	Graphene oxide hole transport layers for large area, high efficiency organic solar cells. Applied Physics Letters, 2014, 105, .	1.5	53
103	Source-gated transistors for order-of-magnitude performance improvements in thin-film digital circuits. Scientific Reports, 2014, 4, 4295.	1.6	53
104	Effects of humidity on the electronic properties of graphene prepared by chemical vapour deposition. Carbon, 2016, 103, 273-280.	5.4	53
105	Solvent Engineering as a Vehicle for High Quality Thin Films of Perovskites and Their Device Fabrication. Small, 2021, 17, e2008145.	5.2	53
106	Interpretation of enhancement factor in nonplanar field emitters. Applied Physics Letters, 2005, 87, 013111.	1.5	52
107	Fluoropolymer indium-tin-oxide buffer layers for improved power conversion in organic photovoltaics. Applied Physics Letters, 2008, 93, .	1.5	52
108	The Role of Substituent Effects in Tuning Metallophilic Interactions and Emission Energy of Bisâ€4â€(2â€pyridyl)â€1,2,3â€ŧriazolatoplatinum(II) Complexes. Angewandte Chemie - International Edition, 20 54, 7949-7953.	157.2	52

#	Article	IF	CITATIONS
109	Wearable Triboelectric Nanogenerator from Waste Materials for Autonomous Information Transmission <i>via</i> Morse Code. ACS Applied Materials & Interfaces, 2022, 14, 5328-5337.	4.0	52
110	Excimer laser nanostructuring of nickel thin films for the catalytic growth of carbon nanotubes. Applied Physics Letters, 2004, 84, 4035-4037.	1.5	51
111	Thickness dependence of properties of excimer laser crystallized nano-polycrystalline silicon. Journal of Applied Physics, 2005, 97, 114305.	1.1	51
112	Organic–Inorganic Solar Cells: Recent Developments and Outlook. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1595-1606.	1.9	51
113	Electrical semiconduction modulated by light in a cobalt and naphthalene diimide metal-organic framework. Nature Communications, 2017, 8, 2139.	5.8	51
114	Nitrogenated amorphous carbon as a semiconductor. Diamond and Related Materials, 1996, 5, 401-404.	1.8	50
115	A PbS nanocrystal-C60 photovoltaic device for infrared light harvesting. Applied Physics Letters, 2007, 91, 133506.	1.5	49
116	Highly efficient near-infrared hybrid organic-inorganic nanocrystal electroluminescence device. Applied Physics Letters, 2008, 92, .	1.5	49
117	Dimensionally and environmentally ultra-stable polymer composites reinforced with carbon fibres. Nature Materials, 2020, 19, 317-322.	13.3	49
118	The structure of tetrahedral amorphous carbon thin films. Thin Solid Films, 1996, 290-291, 317-322.	0.8	48
119	Influence of dc bias voltage on the refractive index and stress of carbonâ€diamond films deposited from a CH4/Ar rf plasma. Journal of Applied Physics, 1991, 70, 5374-5379.	1.1	47
120	Field emission from undoped and nitrogen-doped tetrahedral amorphous carbon film prepared by filtered cathodic vacuum arc technique. Diamond and Related Materials, 1998, 7, 640-644.	1.8	47
121	Silver filled single-wall carbon nanotubes—synthesis, structural and electronic properties. Nanotechnology, 2006, 17, 2415-2419.	1.3	47
122	Uptake and Release of Doubleâ€Walled Carbon Nanotubes by Mammalian Cells. Advanced Functional Materials, 2010, 20, 3272-3279.	7.8	47
123	Carrier type inversion in quasi-free standing graphene: studies of local electronic and structural properties. Scientific Reports, 2015, 5, 10505.	1.6	47
124	Photoconductivity in highly tetrahedral diamondlike amorphous carbon. Applied Physics Letters, 1993, 63, 370-372.	1.5	46
125	Evidence for Metal-Semiconductor Transitions in Twisted and Collapsed Double-Walled Carbon Nanotubes by Scanning Tunneling Microscopy. Nano Letters, 2008, 8, 3350-3356.	4.5	46
126	Design of double-walled carbon nanotubes for biomedical applications. Nanotechnology, 2012, 23, 365102.	1.3	46

#	Article	IF	CITATIONS
127	Influence of precursor gases on the structure of plasma deposited amorphous hydrogenated carbon–nitrogen films. Applied Physics Letters, 1996, 68, 2645-2647.	1.5	45
128	Low-Field Behavior of Source-Gated Transistors. IEEE Transactions on Electron Devices, 2013, 60, 2444-2449.	1.6	45
129	Reduced bilateral recombination by functional molecular interface engineering for efficient inverted perovskite solar cells. Nano Energy, 2020, 78, 105249.	8.2	45
130	Complex <scp>permittivityâ€dependent</scp> plasma <scp>confinementâ€assisted</scp> growth of asymmetric vertical graphene nanofiber membrane for <scp>highâ€performance Liâ€6</scp> full cells. InformaÄnÃ-Materiály, 2022, 4, .	8.5	45
131	Interpretation of the field enhancement factor for electron emission from carbon nanotubes. Journal of Applied Physics, 2009, 106, 014314.	1.1	44
132	Optimising DNA binding to carbon nanotubes by non-covalent methods. Carbon, 2011, 49, 1775-1781.	5.4	44
133	Modeling of the electron field emission process in polycrystalline diamond and diamond-like carbon thin films. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 557.	1.6	43
134	Enhancing the electrical conduction in amorphous carbon and prospects for device applications. Diamond and Related Materials, 2003, 12, 151-158.	1.8	42
135	Laser-nanostructured Ag films as substrates for surface-enhanced Raman spectroscopy. Applied Physics Letters, 2006, 88, 081904.	1.5	42
136	Organic solar cells with plasmonic layers formed by laser nanofabrication. Physical Chemistry Chemical Physics, 2013, 15, 8237.	1.3	42
137	Thin film hexagonal gold grids as transparent conducting electrodes in organic light emitting diodes. Laser and Photonics Reviews, 2014, 8, 172-179.	4.4	42
138	Reactive ion etching of quartz and Pyrex for microelectronic applications. Journal of Applied Physics, 2002, 92, 3624-3629.	1.1	41
139	Poly(3- hydroxybutyrate)/Bioglass®composite films containing carbon nanotubes. Nanotechnology, 2007, 18, 075701.	1.3	41
140	Engineering the plasmon resonance of large area bimetallic nanoparticle films by laser nanostructuring for chemical sensors. Optics Letters, 2011, 36, 1362.	1.7	41
141	Highly conductive and dispersible graphene and its application in P3HT-based solar cells. Chemical Communications, 2014, 50, 8705.	2.2	41
142	Exceptional rate capability from carbonâ€encapsulated polyaniline supercapacitor electrodes. Energy and Environmental Materials, 2020, 3, 389-397.	7.3	41
143	Thermal stability of plasma deposited thin films of hydrogenated carbon–nitrogen alloys. Journal of Applied Physics, 1999, 86, 6276-6281.	1.1	40
144	Measurement and validation of PbS nanocrystal energy levels. Applied Physics Letters, 2008, 93, .	1.5	40

#	Article	IF	CITATIONS
145	Near infrared up-conversion in organic photovoltaic devices using an efficient Yb3+:Ho3+ Co-doped Ln2BaZnO5 (Ln = Y, Gd) phosphor. Journal of Applied Physics, 2012, 111, 094502.	1.1	40
146	Photo-thermal chemical vapor deposition growth of graphene. Carbon, 2012, 50, 668-673.	5.4	40
147	Defect Engineering toward Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800326.	1.9	40
148	Natural silk-composite enabled versatile robust triboelectric nanogenerators for smart applications. Nano Energy, 2021, 83, 105819.	8.2	40
149	Electron delocalization in amorphous carbon by ion implantation. Physical Review B, 2001, 63, .	1.1	39
150	ENOBIO dry electrophysiology electrode; first human trial plus wireless electrode system. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 6690-4.	0.5	39
151	Enhancing the performance of polymer solar cells using solution-processed copper doped nickel oxide nanoparticles as hole transport layer. Journal of Colloid and Interface Science, 2019, 535, 308-317.	5.0	39
152	High-rate low-temperature growth of vertically aligned carbon nanotubes. Nanotechnology, 2010, 21, 505604.	1.3	38
153	High Quality Carbon Nanotubes on Conductive Substrates Grown at Low Temperatures. Advanced Functional Materials, 2015, 25, 4419-4429.	7.8	38
154	Supercapacitor electrode with high charge density based on boron-doped porous carbon derived from covalent organic frameworks. Carbon, 2021, 184, 418-425.	5.4	38
155	Direct Observation of Compositionally Homogeneousa-C: H Band-Gap-Modulated Superlattices. Physical Review Letters, 1995, 75, 4258-4261.	2.9	37
156	Conditioning of hydrogenated amorphous carbon thin films for field emission via current stressing. Applied Physics Letters, 2001, 78, 347-349.	1.5	36
157	Field emission from multiwall carbon nanotubes on paper substrates. Applied Physics Letters, 2007, 90, 173124.	1.5	36
158	Electron field emission from surface treated tetrahedral amorphous carbon films. Applied Physics Letters, 1999, 74, 833-835.	1.5	35
159	Efficient field emission from Li-salt functionalized multiwall carbon nanotubes on flexible substrates. Applied Physics Letters, 2007, 90, 013120.	1.5	35
160	Nanocrystalline silicon solar cells from excimer laser crystallization of amorphous silicon. Solar Energy Materials and Solar Cells, 2008, 92, 634-638.	3.0	35
161	Field emission from a-C:H and a-C:H:N. Journal of Non-Crystalline Solids, 1996, 198-200, 611-614.	1.5	34
162	Energy Scavenging and Powering E-Skin Functional Devices. Proceedings of the IEEE, 2019, 107, 2118-2136.	16.4	34

#	Article	IF	CITATIONS
163	Tin(<scp>iv</scp>) dopant removal through anti-solvent engineering enabling tin based perovskite solar cells with high charge carrier mobilities. Journal of Materials Chemistry C, 2019, 7, 8389-8397.	2.7	34
164	Quantum Size Effects in Amorphous Diamond-like Carbon Superlattices. Japanese Journal of Applied Physics, 1994, 33, 6458-6465.	0.8	33
165	Use of space-charge-limited current to evaluate the electronic density of states in diamond-like carbon thin films. Thin Solid Films, 1994, 253, 146-150.	0.8	33
166	Characterisation of defects in thin films of hydrogenated amorphous carbon. Diamond and Related Materials, 2000, 9, 781-785.	1.8	33
167	Electron field emission from room temperature grown carbon nanofibers. Journal of Applied Physics, 2004, 95, 3153-3157.	1.1	33
168	Transport properties of low-dimensional amorphous carbon films. Thin Solid Films, 2005, 482, 94-98.	0.8	33
169	Controlled Growth-Reversal of Catalytic Carbon Nanotubes under Electron-Beam Irradiation. Nano Letters, 2006, 6, 1837-1841.	4.5	33
170	Atomic and electronic structure in collapsed carbon nanotubes evidenced by scanning tunneling microscopy. Physical Review B, 2007, 76, .	1.1	33
171	RF Response of Single-Walled Carbon Nanotubes. Nano Letters, 2007, 7, 2672-2675.	4.5	33
172	The Inner Shell Influence on the Electronic Structure of Doubleâ€Walled Carbon Nanotubes. Advanced Materials, 2008, 20, 189-194.	11.1	33
173	Low cost patterning of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) films to increase organic photovoltaic device efficiency. Applied Physics Letters, 2008, 93, 103301.	1.5	33
174	Field Plate Optimization in Low-Power High-Gain Source-Gated Transistors. IEEE Transactions on Electron Devices, 2012, 59, 2180-2186.	1.6	33
175	Cr ³⁺ substituted spinel ferrite nanoparticles with high coercivity. Nanotechnology, 2016, 27, 245707.	1.3	33
176	Novel Tunnelâ€Contactâ€Controlled IGZO Thinâ€Film Transistors with High Tolerance to Geometrical Variability. Advanced Materials, 2019, 31, e1902551.	11.1	33
177	Approaching the Shockley–Queisser limit for fill factors in lead–tin mixed perovskite photovoltaics. Journal of Materials Chemistry A, 2020, 8, 693-705.	5.2	33
178	Electron field emission from carbon-based materials. Thin Solid Films, 2005, 482, 79-85.	0.8	32
179	Polymer supported carbon nanotube arrays for field emission and sensor devices. Applied Physics Letters, 2006, 89, 103113.	1.5	32
180	Laser direct write of silver nanoparticles from solution onto glass substrates for surface-enhanced Raman spectroscopy. Applied Physics Letters, 2007, 91, 023107.	1.5	32

#	Article	IF	CITATIONS
181	Chloroquine-enhanced gene delivery mediated by carbon nanotubes. Carbon, 2011, 49, 5348-5358.	5.4	32
182	Electron field emission from excimer laser crystallized amorphous silicon. Applied Physics Letters, 2002, 80, 4154-4156.	1.5	31
183	Thermionic emission from defective carbon nanotubes. Applied Physics Letters, 2004, 85, 2065-2067.	1.5	31
184	Nanoimprinted large area heterojunction pentacene-C60 photovoltaic device. Applied Physics Letters, 2007, 90, 253502.	1.5	31
185	Inner-Tube Chirality Determination for Double-Walled Carbon Nanotubes by Scanning Tunneling Microscopy. Nano Letters, 2007, 7, 1232-1239.	4.5	31
186	Laser-induced decoration ofÂcarbon nanotubes with metal nanoparticles. Applied Physics A: Materials Science and Processing, 2008, 93, 875-879.	1.1	31
187	Highly aligned arrays of super resilient carbon nanotubes by steam purification. Carbon, 2015, 84, 130-137.	5.4	31
188	An EPR study of defects in hydrogenated amorphous carbon thin films. Diamond and Related Materials, 1998, 7, 864-868.	1.8	30
189	Carbon spheres generated in â€ [~] dusty plasmas'. Carbon, 2005, 43, 704-708.	5.4	30
190	Electrical properties of pulsed UV laser irradiated amorphous carbon. Applied Physics Letters, 2008, 92, 152104.	1.5	30
191	Silver grid transparent conducting electrodes for organic light emitting diodes. Organic Electronics, 2014, 15, 3492-3500.	1.4	30
192	Millimeter-Scale Unipolar Transport in High Sensitivity Organic–Inorganic Semiconductor X-ray Detectors. ACS Nano, 2019, 13, 6973-6981.	7.3	30
193	Highâ€Performance ITOâ€Free Perovskite Solar Cells Enabled by Singleâ€Walled Carbon Nanotube Films. Advanced Functional Materials, 2021, 31, 2104396.	7.8	30
194	Mechanical and NH3 sensing properties of long multi-walled carbon nanotube ropes. Carbon, 2006, 44, 1821-1825.	5.4	29
195	Electron field emission from composite electrodes of carbon nanotubes-boron-doped diamond and carbon felts. Applied Physics Letters, 2006, 88, 083116.	1.5	29
196	Temperature dependent separation of metallic and semiconducting carbon nanotubes using gel agarose chromatography. Carbon, 2015, 93, 574-594.	5.4	29
197	Diamond-like carbon thin film deposition using a magnetically confined r.f. PECVD system. Diamond and Related Materials, 1995, 4, 977-983.	1.8	28
198	Highly photoconductive amorphous carbon nitride films prepared by cyclic nitrogen radical sputtering. Applied Physics Letters, 2004, 85, 2803-2805.	1.5	28

#	Article	IF	CITATIONS
199	Electron energy loss spectroscopy of carbonaceous materials. Thin Solid Films, 2005, 488, 283-290.	0.8	28
200	Electron field emission of carbon nanotubes on carbon felt. Chemical Physics Letters, 2006, 424, 151-155.	1.2	28
201	In situ and real time determination of metallic and semiconducting single-walled carbon nanotubes in suspension via dielectrophoresis. Applied Physics Letters, 2006, 88, 243109.	1.5	28
202	In-Plane Large Single-Walled Carbon Nanotube Films: Inâ€Situ Synthesis and Field-Emission Properties. Small, 2006, 2, 1026-1030.	5.2	27
203	Enhancement of Polymer Luminescence by Excitationâ€Energy Transfer from Multiâ€Walled Carbon Nanotubes. Small, 2007, 3, 1927-1933.	5.2	27
204	Laser implantation of plasmonic nanostructures into glass. Nanoscale, 2013, 5, 1054-1059.	2.8	27
205	Solution processable multi-channel ZnO nanowire field-effect transistors with organic gate dielectric. Nanotechnology, 2013, 24, 405203.	1.3	27
206	Plasmonic Organic Photovoltaics: Unraveling Plasmonic Enhancement for Realistic Cell Geometries. ACS Photonics, 2018, 5, 1440-1452.	3.2	27
207	Determining the Level and Location of Functional Groups on Few-Layer Graphene and Their Effect on the Mechanical Properties of Nanocomposites. ACS Applied Materials & 2020, 10, 13481-13493.	4.0	27
208	A fast sonochemical approach for the synthesis of solution processable ZnO rods. Journal of Applied Physics, 2008, 104, .	1.1	26
209	Functionalized multiwall carbon nanotubes incorporated polymer/fullerene hybrid photovoltaics. Applied Physics Letters, 2010, 97, 033105.	1.5	26
210	Complete Atomic Oxygen and UV Protection for Polymer and Composite Materials in a Low Earth Orbit. ACS Applied Materials & Interfaces, 2021, 13, 6670-6677.	4.0	26
211	A multi-wall carbon nanotube–molecular semiconductor composite for bi-layer organic solar cells. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 124-127.	1.3	25
212	From Stems (and Stars) to Roses: Shape-Controlled Synthesis of Zinc Oxide Crystals. Crystal Growth and Design, 2009, 9, 3432-3437.	1.4	25
213	High luminance organic light-emitting diodes with efficient multi-walled carbon nanotube hole injectors. Carbon, 2012, 50, 4163-4170.	5.4	25
214	Structural, chemical and electrical characterisation of conductive graphene-polymer composite films. Applied Surface Science, 2017, 403, 403-412.	3.1	25
215	Low-Temperature Solution-Processed Mg:SnO ₂ Nanoparticles as an Effective Cathode Interfacial Layer for Inverted Polymer Solar Cell. ACS Sustainable Chemistry and Engineering, 2018, 6, 6702-6710.	3.2	25
216	Investigation on the Current Nonuniformity in Current-Mode TFT Active-Matrix Display Pixel Circuitry. IEEE Transactions on Electron Devices, 2005, 52, 2379-2385.	1.6	24

#	Article	IF	CITATIONS
217	ENOBIO - First Tests of a Dry Electrophysiology Electrode using Carbon Nanotubes. , 2006, 2006, 1826-9.		24
218	The fabrication and analysis of a PbS nanocrystal:C60bilayer hybrid photovoltaic system. Nanotechnology, 2009, 20, 245202.	1.3	24
219	Performance trade-offs in polysilicon source-gated transistors. Solid-State Electronics, 2011, 65-66, 246-249.	0.8	24
220	The effect of plasma modification on the sheet resistance of nylon fabrics coated with carbon nanotubes. Applied Surface Science, 2012, 258, 8209-8213.	3.1	24
221	Raman, EELS and XPS studies of maghemite decorated multi-walled carbon nanotubes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 121, 715-718.	2.0	24
222	Photonic Curing of Low-Cost Aqueous Silver Flake Inks for Printed Conductors with Increased Yield. ACS Applied Materials & Interfaces, 2018, 10, 21398-21410.	4.0	24
223	Demonstration of an amorphous carbon tunnel diode. Applied Physics Letters, 2007, 90, 082105.	1.5	23
224	Two-step electron tunneling from confined electronic states in a nanoparticle. Physical Review B, 2009, 79, .	1.1	23
225	The incorporation of mono- and bi-functionalized multiwall carbon nanotubes in organic photovoltaic cells. Nanotechnology, 2011, 22, 265607.	1.3	23
226	Hierarchically designed ZnO nanostructure based high performance gas sensors. RSC Advances, 2014, 4, 49521-49528.	1.7	23
227	Tailoring Perovskite Adjacent Interfaces by Conjugated Polyelectrolyte for Stable and Efficient Solar Cells. Solar Rrl, 2020, 4, 2000060.	3.1	23
228	An easy to assemble PDMS/CNTs/PANI flexible supercapacitor with high energy-to-power density. Nanoscale, 2022, 14, 2266-2276.	2.8	23
229	The microstructural dependence of the opto-electronic properties of nitrogenated hydrogenated amorphous carbon thin films. Thin Solid Films, 1998, 332, 118-123.	0.8	22
230	Branched carbon nanofiber network synthesis at room temperature using radio frequency supported microwave plasmas. Journal of Applied Physics, 2004, 96, 3443-3446.	1.1	22
231	Near edge x-ray absorption fine structure study of aligned π-bonded carbon structures in nitrogenated ta-C films. Journal of Applied Physics, 2006, 99, 043511.	1.1	22
232	Efficient laser textured nanocrystalline silicon-polymer bilayer solar cells. Applied Physics Letters, 2007, 90, 203514.	1.5	22
233	Cellular localization, accumulation and trafficking of double-walled carbon nanotubes in human prostate cancer cells. Nano Research, 2012, 5, 223-234.	5.8	22
234	Efficient Coupling of Optical Energy for Rapid Catalyzed Nanomaterial Growth: High-Quality Carbon Nanotube Synthesis at Low Substrate Temperatures. ACS Applied Materials & Interfaces, 2013, 5, 3861-3866.	4.0	22

#	Article	IF	CITATIONS
235	Fabrication of air-stable, large-area, PCDTBT:PC70BM polymer solar cell modules using a custom built slot-die coater. Solar Energy Materials and Solar Cells, 2017, 161, 388-396.	3.0	22
236	Sequential growth of hierarchical N-doped carbon-MoS ₂ nanocomposites with variable nanostructures. Journal of Materials Chemistry A, 2019, 7, 6197-6204.	5.2	22
237	Enhancing the field emission properties of amorphous carbon films by thermal annealing. Thin Solid Films, 1999, 337, 257-260.	0.8	21
238	Stress-induced electron emission from nanocomposite amorphous carbon thin films. Applied Physics Letters, 2002, 81, 853-855.	1.5	21
239	Diamond-like carbon thin films for high-temperature applications prepared by filtered pulsed laser deposition. Vacuum, 2005, 80, 163-167.	1.6	21
240	The properties and deposition process of GaN films grown by reactive sputtering at low temperatures. Journal of Applied Physics, 2006, 99, 073503.	1.1	21
241	Laser Ablation Direct Writing of Metal Nanoparticles for Hydrogen and Humidity Sensors. Langmuir, 2011, 27, 1241-1244.	1.6	21
242	Surface and interface structure of quasi-free standing graphene on SiC. 2D Materials, 2016, 3, 025023.	2.0	21
243	Proposed use of self-regulating temperature nanoparticles for cancer therapy. Expert Review of Anticancer Therapy, 2018, 18, 723-725.	1.1	21
244	Electrochemical supercapacitors based on 3D nanocomposites of reduced graphene oxide/carbon nanotube and ZnS. Journal of Alloys and Compounds, 2020, 836, 155408.	2.8	21
245	Carbon based electronic materials: applications in electron field emission. Journal of Materials Science: Materials in Electronics, 2006, 17, 405-412.	1.1	20
246	Silver-nanoparticle-decorated carbon nanoscaffolds: Application as a sensing platform. Applied Physics Letters, 2006, 89, 183120.	1.5	20
247	Towards type-selective carbon nanotube growth at low substrate temperature via photo-thermal chemical vapour deposition. Carbon, 2015, 84, 409-418.	5.4	20
248	Carbon Nanotube Interconnects Realized through Functionalization and Sintered Silver Attachment. ACS Applied Materials & Interfaces, 2016, 8, 5563-5570.	4.0	20
249	Effects of ambient humidity on the optimum annealing time of mixed-halide Perovskite solar cells. Nanotechnology, 2017, 28, 114004.	1.3	20
250	Hole Extraction Enhancement for Efficient Polymer Solar Cells with Boronic Acid Functionalized Carbon Nanotubes doped Hole Transport Layers. ACS Sustainable Chemistry and Engineering, 2018, 6, 5122-5131.	3.2	20
251	Progress of Pb‣n Mixed Perovskites for Photovoltaics: AÂReview. Energy and Environmental Materials, 2022, 5, 370-400.	7.3	20
252	RBS and ERDA study of ion beam synthesised amorphous gallium nitride. Nuclear Instruments & Methods in Physics Research B, 1999, 148, 463-467.	0.6	19

#	Article	IF	CITATIONS
253	Photoluminescence from polymer-like hydrogenated and nitrogenated amorphous carbon films. Journal of Applied Physics, 2000, 88, 5175-5179.	1.1	19
254	Electron field emission properties of Co quantum dots in SiO2 matrix synthesised by ion implantation. Ultramicroscopy, 2007, 107, 819-824.	0.8	19
255	Electrical conduction mechanism in laser deposited amorphous carbon. Thin Solid Films, 2007, 516, 257-261.	0.8	19
256	Enhanced photovoltaic performance in nanoimprinted pentacene-PbS nanocrystal hybrid device. Applied Physics Letters, 2008, 92, 093308.	1.5	19
257	Self-assembly of single walled carbon nanotubes onto cotton to make conductive yarn. Particuology, 2012, 10, 517-521.	2.0	19
258	Correlation between wetting properties and electrical performance of solution processed PEDOT:PSS/CNT nano-composite thin films. Colloid and Polymer Science, 2014, 292, 661-668.	1.0	19
259	Tuning epitaxial graphene sensitivity to water by hydrogen intercalation. Nanoscale, 2017, 9, 3440-3448.	2.8	19
260	Solution-processed SnO2 nanoparticle interfacial layers for efficient electron transport in ZnO-based polymer solar cells. Organic Electronics, 2018, 62, 373-381.	1.4	19
261	Compact Source-Gated Transistor Analog Circuits for Ubiquitous Sensors. IEEE Sensors Journal, 2020, 20, 14903-14913.	2.4	19
262	Effects of electromagnetic fields on neuronal ion channels: a systematic review. Annals of the New York Academy of Sciences, 2021, 1499, 82-103.	1.8	19
263	The microstructure of inclusions in nanocrystalline carbon films deposited at low temperature. Diamond and Related Materials, 1994, 3, 1048-1055.	1.8	18
264	Electron field emission studies from amorphous carbon thin films. Diamond and Related Materials, 1998, 7, 645-650.	1.8	18
265	The stability of nitrogen-containing amorphous carbon films after annealing at moderate temperatures. Diamond and Related Materials, 1998, 7, 495-498.	1.8	18
266	Growth and field emission properties of vertically aligned carbon nanofibers. Journal of Applied Physics, 2005, 97, 114308.	1.1	18
267	Pulsed laser deposited tetrahedral amorphous carbon with high sp3 fractions and low optical bandgaps. Journal of Applied Physics, 2009, 105, 073521.	1.1	18
268	Carbon nanotube modified electrodes for enhanced brightness in organic light emitting devices. Carbon, 2011, 49, 4211-4217.	5.4	18
269	Inkjet printed PEDOT:PSS/MWCNT nanoâ€composites with aligned carbon nanotubes and enhanced conductivity. Physica Status Solidi - Rapid Research Letters, 2014, 8, 150-153.	1.2	18
270	Temperature dependence of the current in Schottky-barrier source-gated transistors. Journal of Applied Physics, 2015, 117, .	1.1	18

#	Article	IF	CITATIONS
271	Tunable scattering from liquid crystal devices using carbon nanotubes network electrodes. Nanoscale, 2015, 7, 330-336.	2.8	18
272	Probing of polymer to carbon nanotube surface interactions within highly aligned electrospun nanofibers for advanced composites. Carbon, 2018, 138, 207-214.	5.4	18
273	Solution processed hybrid Graphene-MoO3 hole transport layers for improved performance of organic solar cells. Organic Electronics, 2019, 67, 95-100.	1.4	18
274	Strontium Fluoride and Zinc Oxide Stacked Structure as an Interlayer in High-Performance Inverted Polymer Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 2149-2158.	4.0	18
275	Emerging Bioelectronic Strategies for Cardiovascular Tissue Engineering and Implantation. Small, 2022, 18, e2105281.	5.2	18
276	Controlling mechanisms for field-induced electron emission from diamond-like carbon films. Ultramicroscopy, 1998, 73, 51-57.	0.8	17
277	Electron field-emission properties of Ag–SiO[sub 2] nanocomposite layers. Journal of Vacuum Science & Technology B, 2006, 24, 958.	1.3	17
278	Versatile Thinâ€Film Transistor with Independent Control of Charge Injection and Transport for Mixed Signal and Analog Computation. Advanced Intelligent Systems, 2021, 3, 2000199.	3.3	17
279	A synergistic Cs ₂ CO ₃ ETL treatment to incorporate Cs cation into perovskite solar cells <i>via</i> two-step scalable fabrication. Journal of Materials Chemistry C, 2021, 9, 4367-4377.	2.7	17
280	Thin amorphous gallium nitride films formed by ion beam synthesis. Nuclear Instruments & Methods in Physics Research B, 1999, 147, 388-392.	0.6	16
281	Super sequential lateral growth of Nd:YAG laser crystallized hydrogenated amorphous silicon. Applied Physics Letters, 2001, 78, 186-188.	1.5	16
282	Negative differential conductance observed in electron field emission from band gap modulated amorphous-carbon nanolayers. Applied Physics Letters, 2006, 89, 193103.	1.5	16
283	Effect of the nanostructure and surface chemistry on the gas adsorption properties of macroscopic multiwalled carbon nanotube ropes. Carbon, 2007, 45, 83-88.	5.4	16
284	High-Performance Transistors by Design. Science, 2008, 320, 618-619.	6.0	16
285	Amorphous carbon and carbon nitride bottom gate thin film transistors. Applied Physics Letters, 2009, 95, .	1.5	16
286	Ultraviolet-illuminated fluoropolymer indium–tin-oxide buffer layers for improved power conversion in organic photovoltaics. Organic Electronics, 2009, 10, 1178-1181.	1.4	16
287	The effects of phenolic hydrogens and methyl substitute groups in organic dyes on their dispersion of multiple-walled carbon nanotubes. Carbon, 2010, 48, 2063-2071.	5.4	16
288	Highly Transmissive Carbon Nanotube Forests Grown at Low Substrate Temperature. Advanced Functional Materials, 2013, 23, 5502-5509.	7.8	16

#	Article	IF	CITATIONS
289	Solution processed naphthalene diimide derivative as electron transport layers for enhanced brightness and efficient polymer light emitting diodes. Journal of Materials Chemistry C, 2013, 1, 3347.	2.7	16
290	A critical look at organic photovoltaic fabrication methodology: Defining performance enhancement parameters relative to active area. Solar Energy Materials and Solar Cells, 2014, 130, 513-520.	3.0	16
291	Self-Heating Effects In Polysilicon Source Gated Transistors. Scientific Reports, 2015, 5, 14058.	1.6	16
292	Sourceâ€Gated Transistors Based on Solution Processed Silicon Nanowires for Low Power Applications. Advanced Electronic Materials, 2017, 3, 1600256.	2.6	16
293	Design considerations for the source region of Schottky-barrier source-gated transistors. , 2017, , .		16
294	Optical quantum size effects in diamond-like carbon superlattice structures. Thin Solid Films, 1994, 253, 20-24.	0.8	15
295	Low temperature growth of gallium nitride. Diamond and Related Materials, 2000, 9, 456-459.	1.8	15
296	Role of nanostructure on electron field emission from amorphous carbon thin films. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 1633.	1.6	15
297	Large area growth of carbon nanotube arrays for sensing platforms. Sensors and Actuators B: Chemical, 2005, 109, 75-80.	4.0	15
298	Bandgap enhancement of layered nanocrystalline silicon from excimer laser crystallization. Nanotechnology, 2006, 17, 5412-5416.	1.3	15
299	Encapsluation of Co and Pd multi-metal nanowires inside multiwalled carbon nanotubes by microwave plasma chemical vapor deposition. Diamond and Related Materials, 2007, 16, 1200-1203.	1.8	15
300	Capillary filling of singleâ€walled carbon nanotubes with ferrocene in an organic solvent. Physica Status Solidi (B): Basic Research, 2008, 245, 1983-1985.	0.7	15
301	Current percolation in ultrathin channel nanocrystalline silicon transistors. Applied Physics Letters, 2008, 93, .	1.5	15
302	Laser-induced self-assembly of iron oxide nanostructures with controllable dimensionality. Journal of Applied Physics, 2009, 106, .	1.1	15
303	Electronic properties of singleâ€walled carbon nanotubes encapsulating a cerium organometallic compound. Physica Status Solidi (B): Basic Research, 2009, 246, 2626-2630.	0.7	15
304	Exact equipotential profile mapping: A self-validating method. Journal of Applied Physics, 2011, 109, .	1.1	15
305	Superficial fluoropolymer layers for efficient light-emitting diodes. Organic Electronics, 2012, 13, 992-998.	1.4	15
306	Modeling the binding of peptides on carbon nanotubes and their use as protein and DNA carriers. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	15

#	Article	IF	CITATIONS
307	A model for the impact of the nanostructure size on its gas sensing properties. RSC Advances, 2015, 5, 103195-103202.	1.7	15
308	Heterojunction solar cells with improved power conversion efficiency using graphene quantum dots. RSC Advances, 2016, 6, 110493-110498.	1.7	15
309	Hot carriers in mixed Pb-Sn halide perovskite semiconductors cool slowly while retaining their electrical mobility. Physical Review B, 2020, 102, .	1.1	15
310	Field emission from nonaligned carbon nanotube–polymer matrix cathodes. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 1715.	1.6	14
311	Study of the current stressing in nanomanipulated three-dimensional carbon nanotube structures. Applied Physics Letters, 2005, 87, 033102.	1.5	14
312	Semiconducting phase of amorphous carbon-nickel composite films. Applied Physics Letters, 2006, 89, 022113.	1.5	14
313	Controlled growth of true nanoscale single crystal fullerites for device applications. Journal of Materials Chemistry, 2008, 18, 3319.	6.7	14
314	Electronic state modification in laser deposited amorphous carbon films by the inclusion of nitrogen. Journal of Applied Physics, 2008, 104, 063701.	1.1	14
315	Highly conductive nanoclustered carbon:nickel films grown by pulsed laser deposition. Carbon, 2011, 49, 3781-3788.	5.4	14
316	Protamine and Chloroquine Enhance Gene Delivery and Expression Mediated by RNA-Wrapped Single Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2012, 12, 1739-1747.	0.9	14
317	Towards the rational design of polymers using molecular simulation: Predicting the effect of cure schedule on thermo-mechanical properties for a cycloaliphatic amine-cured epoxy resin. Reactive and Functional Polymers, 2014, 74, 1-15.	2.0	14
318	Adsorbent 2D and 3D carbon matrices with protected magnetic iron nanoparticles. Nanoscale, 2015, 7, 17441-17449.	2.8	14
319	PTFE/MoO ₃ Anode Bilayer Buffer Layers for Improved Performance in PCDTBT:PC ₇₁ BM Blend Organic Solar Cells. ACS Sustainable Chemistry and Engineering, 2016, 4, 6473-6479.	3.2	14
320	Physicochemical characterisation of reduced graphene oxide for conductive thin films. RSC Advances, 2018, 8, 37540-37549.	1.7	14
321	Tribological properties of diamond-like carbon films deposited on silicon using r.f. plasma enhanced CVD. Surface and Coatings Technology, 1995, 73, 132-136.	2.2	13
322	Electron field emission from amorphous silicon. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 596.	1.6	13
323	A study of the effects of nitrogen incorporation and annealing on the properties of hydrogenated amorphous carbon films. Carbon, 1999, 37, 777-780.	5.4	13
324	Growth and characterisation of amorphous carbon films doped with nitrogen. Nuclear Instruments & Methods in Physics Research B, 2000, 161-163, 969-974.	0.6	13

#	Article	IF	CITATIONS
325	A review of the effects of carbon self-implantation into amorphous carbon. Diamond and Related Materials, 2001, 10, 224-229.	1.8	13
326	Nanoengineering of materials for field emission display technologies. IET Circuits, Devices and Systems, 2004, 151, 489.	0.6	13
327	Resonant behavior observed in electron field emission from acid functionalized multiwall carbon nanotubes. Applied Physics Letters, 2009, 94, 123102.	1.5	13
328	Reversible functionalization of multi-walled carbon nanotubes with organic dyes. Scripta Materialia, 2010, 63, 645-648.	2.6	13
329	Probing the band structure of hydrogen-free amorphous carbon and the effect of nitrogen incorporation. Carbon, 2011, 49, 5229-5238.	5.4	13
330	Nano-engineering of hybrid organic heterojunctions with carbon nanotubes to improve photovoltaic performance. Organic Electronics, 2015, 22, 35-39.	1.4	13
331	Controlled growth and spray deposition of silver nanowires for ITOâ€free, flexible, and high brightness OLEDs. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600561.	0.8	13
332	Nickel oxide and polytetrafluoroethylene stacked structure as an interfacial layer for efficient polymer solar cells. Electrochimica Acta, 2019, 299, 366-371.	2.6	13
333	Direct Growth of Vertically Aligned Carbon Nanotubes onto Transparent Conductive Oxide Glass for Enhanced Charge Extraction in Perovskite Solar Cells. Advanced Materials Interfaces, 2020, 7, 2001121.	1.9	13
334	High-efficiency planar heterojunction perovskite solar cell produced by using 4-morpholine ethane sulfonic acid sodium salt doped SnO2. Journal of Colloid and Interface Science, 2022, 609, 547-556.	5.0	13
335	A route towards the fabrication of large-scale and high-quality perovskite films for optoelectronic devices. Scientific Reports, 2022, 12, 7411.	1.6	13
336	Bond formation in ion beam synthesised amorphous gallium nitride. Thin Solid Films, 1999, 343-344, 632-636.	0.8	12
337	ELECTRONIC CONDUCTION IN ION IMPLANATED AMORPHOUS CARBON THIN FILMS. International Journal of Modern Physics B, 2000, 14, 195-205.	1.0	12
338	Electron paramagnetic resonance study of ion implantation induced defects in amorphous hydrogenated carbon. Diamond and Related Materials, 2001, 10, 993-997.	1.8	12
339	Lithography-free high aspect ratio submicron quartz columns by reactive ion etching. Applied Physics Letters, 2004, 84, 1362-1364.	1.5	12
340	The role of the gas species on the formation of carbon nanotubes during thermal chemical vapour deposition. Nanotechnology, 2008, 19, 445605.	1.3	12
341	Broadband energy harvesting with nano-composite PbS-Nanocrystal/Excimer laser crystallized thin film silicon hybrid solar cells. Solar Energy Materials and Solar Cells, 2009, 93, 549-551.	3.0	12
342	Raman and FT-IR studies on dye-assisted dispersion and flocculation of single walled carbon nanotubes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 77, 175-178.	2.0	12

#	Article	IF	CITATIONS
343	Morphology Control of Zinc Oxide Nanocrystals via Hybrid Laser/Hydrothermal Synthesis. Journal of Physical Chemistry C, 2010, 114, 12931-12937.	1.5	12
344	Directly observable G band splitting in Raman spectra from individual tubular graphite cones. Carbon, 2011, 49, 3048-3054.	5.4	12
345	Excimer laser accelerated hydrothermal synthesis of ZnO nanocrystals & their electrical properties. Applied Surface Science, 2011, 257, 5274-5277.	3.1	12
346	3-D Mapping of Sensitivity of Graphene Hall Devices to Local Magnetic and Electrical Fields. IEEE Transactions on Magnetics, 2013, 49, 3445-3448.	1.2	12
347	The true status of solar cell technology. Nature Photonics, 2015, 9, 207-208.	15.6	12
348	Decoration of multiwalled carbon nanotubes with protected iron nanoparticles. Carbon, 2015, 84, 47-55.	5.4	12
349	Large area uniform electrospun polymer nanofibres by balancing of the electrostatic field. Reactive and Functional Polymers, 2018, 129, 89-94.	2.0	12
350	Micro-Centrifugal Technique for Improved Assessment and Optimization of Nanomaterial Dispersions: The Case for Carbon Nanotubes. ACS Applied Nano Materials, 2018, 1, 6217-6225.	2.4	12
351	Ultraâ€Low Dark Current Organic–Inorganic Hybrid Xâ€Ray Detectors. Advanced Functional Materials, 2021, 31, 2008482.	7.8	12
352	The optical properties of band-gap-modulated diamond-like carbon thin films. Diamond and Related Materials, 1994, 3, 817-820.	1.8	11
353	Properties of nanocrystalline GaN films deposited by reactive sputtering. Diamond and Related Materials, 2003, 12, 1417-1421.	1.8	11
354	Polymeric amorphous carbon as p-type window within amorphous silicon solar cells. Applied Physics Letters, 2003, 82, 3979-3981.	1.5	11
355	Effects of stress on electron emission from nanostructured carbon materials. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 1710.	1.6	11
356	Effect of ion bombardment and annealing on the electrical properties of hydrogenated amorphous silicon metal–semiconductor–metal structures. Journal of Applied Physics, 2005, 97, 023519.	1.1	11
357	Use of an asymmetric pulse profile for higher crystalline volumes from excimer laser crystallization of amorphous silicon. Applied Physics Letters, 2007, 90, 171912.	1.5	11
358	RBS/EBS/PIXE measurement of single-walled carbon nanotube modification by nitric acid purification treatment. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 1569-1573.	0.6	11
359	Improving Switching Performance of Thin-Film Transistors in Disordered Silicon. IEEE Electron Device Letters, 2008, 29, 588-591.	2.2	11
360	Electron transfer from a carbon nanotube into vacuum under high electric fields. Journal of Physics Condensed Matter, 2009, 21, 195302.	0.7	11

#	Article	IF	CITATIONS
361	Charge transfer between acenes and PbS nanocrystals. Nanotechnology, 2009, 20, 195205.	1.3	11
362	Photo-Chemical Synthesis of Iron Oxide Nanowires Induced by Pulsed Laser Ablation of Iron Powder in Liquid Media. Integrated Ferroelectrics, 2010, 119, 45-54.	0.3	11
363	Hybrid metal grid-polymer-carbon nanotube electrodes for high luminance organic light emitting diodes. Nanotechnology, 2014, 25, 345202.	1.3	11
364	Towards manufacturing high uniformity polysilicon circuits through TFT contact barrier engineering. Scientific Reports, 2018, 8, 17558.	1.6	11
365	EDITORIAL: Now is the Time for Energy Materials Research to Save the Planet. Energy and Environmental Materials, 2021, 4, 497-499.	7.3	11
366	Stoichiometric limitations of RF plasma deposited amorphous silicon–nitrogen alloys. Thin Solid Films, 1997, 311, 133-137.	0.8	10
367	Electron emission from amorphous silicon thin films. Journal of Non-Crystalline Solids, 1998, 227-230, 1101-1105.	1.5	10
368	Ion-implantation into amorphous hydrogenated carbon films. Journal of Non-Crystalline Solids, 2000, 276, 201-205.	1.5	10
369	Field emission from amorphous semiconductors. Solid-State Electronics, 2001, 45, 1017-1024.	0.8	10
370	Quantum size dependence of electron distribution on carbon nanotubes and its influence on field emission. Journal of Vacuum Science & Technology B, 2006, 24, 874.	1.3	10
371	Core–shell silver/silver chloride nanoparticles on carbon nanofibre arrays for bio-potential monitoring. Nanotechnology, 2007, 18, 205502.	1.3	10
372	Registry-Induced Electronic Superstructure in Double-Walled Carbon Nanotubes, Associated with the Interaction between Two Graphene-Like Monolayers. ACS Nano, 2008, 2, 2113-2120.	7.3	10
373	Simultaneous optical and electrical modeling of plasmonic light trapping in thin-film amorphous silicon photovoltaic devices. Journal of Photonics for Energy, 2015, 5, 057007.	0.8	10
374	Room Temperature Grown Highâ€Quality Polymerâ€Like Carbon Gate Dielectric for Organic Thinâ€Film Transistors. Advanced Electronic Materials, 2016, 2, 1500374.	2.6	10
375	Interaction of ZnO nanorods with plasmonic metal nanoparticles and semiconductor quantum dots. Journal of Chemical Physics, 2020, 152, 064704.	1.2	10
376	Molecular Weight Tuning of Organic Semiconductors for Curved Organic–Inorganic Hybrid Xâ€Ray Detectors. Advanced Science, 2022, 9, e2101746.	5.6	10
377	Microstructural characterisation of carbonaceous dust generated during the deposition of diamond-like carbon coatings. Thin Solid Films, 1998, 332, 252-256.	0.8	9
378	An EPR study at X- and W-band of defects in a-C:H films in the temperature range 5–300 K. Diamond and Related Materials, 2003, 12, 116-123.	1.8	9

#	Article	IF	CITATIONS
379	Comparison of the X-ray photoelectron and electron-energy-loss spectra of the nitrogen-doped hydrogenated amorphous carbon bond. Philosophical Magazine, 2003, 83, 1937-1947.	0.7	9
380	Influence of mechanical stress on electron field emission of multiwalled carbon nanotube–polymer composites. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 698.	1.6	9
381	Effects of applying stress on the electron field emission properties in amorphous carbon thin films. Applied Physics Letters, 2005, 86, 232102.	1.5	9
382	Improved optical and electrical properties of low-temperature sputtered GaN by hydrogenation. Journal of Applied Physics, 2006, 99, 036108.	1.1	9
383	EXCIMER LASER CRYSTALLIZATION AND NANOSTRUCTURING OF AMORPHOUS SILICON FOR PHOTOVOLTAIC APPLICATIONS. Nano, 2008, 03, 117-126.	0.5	9
384	Lowâ€ŧemperature growth of singleâ€wall carbon nanotubes inside nano test tubes. Physica Status Solidi (B): Basic Research, 2010, 247, 2730-2733.	0.7	9
385	Source-Gated Transistors for Versatile Large Area Electronic Circuit Design and Fabrication. ECS Transactions, 2011, 37, 57-63.	0.3	9
386	Does Electronic Type Matter when Singleâ€Walled Carbon Nanotubes are Used for Electrode Applications?. Advanced Functional Materials, 2015, 25, 4520-4530.	7.8	9
387	High efficiency air stable organic photovoltaics with an aqueous inorganic contact. Nanoscale, 2015, 7, 14241-14247.	2.8	9
388	Metal-Carbon Interactions on Reduced Graphene Oxide under Facile Thermal Treatment: Microbiological and Cell Assay. Journal of Nanomaterials, 2017, 2017, 1-10.	1.5	9
389	Nonlinear Band Gap Dependence of Mixed Pb–Sn 2D Ruddlesden–Popper PEA ₂ Pb _{1–<i>x</i>} Sn _{<i>x</i>} I ₄ Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 1501-1506.	2.1	9
390	Degradation Diagnostics from the Subsurface of Lithiumâ€lon Battery Electrodes. Energy and Environmental Materials, 2022, 5, 662-669.	7.3	9
391	Influence of Halide Choice on Formation of Lowâ€Dimensional Perovskite Interlayer in Efficient Perovskite Solar Cells. Energy and Environmental Materials, 2022, 5, 670-682.	7.3	9
392	Ion-beam synthesis of amorphous gallium nitride. Philosophical Magazine Letters, 1998, 78, 319-324.	0.5	8
393	Fullerene and nanotube formation in cool terrestrial "dusty plasmas― Applied Physics Letters, 1998, 73, 3082-3084.	1.5	8
394	Modification of electron field emission properties from surface treated amorphous carbon thin films. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 1051.	1.6	8
395	Microstructure Analyses of Metal-Filled Carbon Nanotubes Synthesized by Microwave Plasma-Enhanced Chemical Vapor Deposition. IEEE Nanotechnology Magazine, 2006, 5, 485-490.	1.1	8
396	Composite electrode of carbon nanotubes and vitreous carbon for electron field emission. Journal of Applied Physics, 2008, 104, 054303.	1.1	8

#	Article	lF	CITATIONS
397	Effects of process variations on the current in Schottky Barrier Source-Gated Transistors. , 2009, , .		8
398	Laser-assisted hydrothermal growth of size-controlled ZnO nanorods for sensing applications. Nanotechnology, 2010, 21, 365502.	1.3	8
399	Dispersive hole transport in polymer:carbon nanotube composites. Nanotechnology, 2011, 22, 265711.	1.3	8
400	Storage Lifetime of Polymer-Carbon Nanotube Inks for Use as Charge Transport Layers in Organic Light Emitting Diodes. Journal of Display Technology, 2014, 10, 125-131.	1.3	8
401	Temperature Effects in Complementary Inverters Made With Polysilicon Source-Gated Transistors. IEEE Transactions on Electron Devices, 2015, 62, 1498-1503.	1.6	8
402	Heterostructure Source-Gated Transistors: Challenges in Design and Fabrication. ECS Transactions, 2016, 75, 61-66.	0.3	8
403	Electronic behaviour and field emission of a-C:H:N/Si heterojunctions. Journal of Non-Crystalline Solids, 1998, 227-230, 1106-1112.	1.5	7
404	Tailoring of the field emission properties of hydrogenated amorphous carbon thin films by nitrogen incorporation and thermal annealing. Diamond and Related Materials, 2000, 9, 1205-1208.	1.8	7
405	Structural characterization of hard a-C:H films as a function of the methane pressure. Diamond and Related Materials, 2002, 11, 980-984.	1.8	7
406	Effects of ion implantation on electron centers in hydrogenated amorphous carbon films. Journal of Applied Physics, 2003, 93, 5905-5910.	1.1	7
407	Reversible increase of photocurrents in excimer laser-crystallized silicon solar cells. Solar Energy Materials and Solar Cells, 2008, 92, 1378-1381.	3.0	7
408	Room temperature photoluminescence in the visible range from silicon nanowires grown by a solid-state reaction. IOP Conference Series: Materials Science and Engineering, 2009, 6, 012011.	0.3	7
409	The growth of silica and silica-clad nanowires using a solid-state reaction mechanism on Ti, Ni and SiO ₂ layers. Nanotechnology, 2010, 21, 295603.	1.3	7
410	Spontaneous Emergence of Long-Range Shape Symmetry. Nano Letters, 2011, 11, 160-163.	4.5	7
411	Vertical graphene nanoflakes for the immobilization, electrocatalytic oxidation and quantitative detection of DNA. Electrochemistry Communications, 2012, 25, 140-143.	2.3	7
412	Catalysing the production of multiple arm carbon octopi nanostructures. Carbon, 2012, 50, 2141-2146.	5.4	7
413	Microscopic insight into the bilateral formation of carbon spirals from a symmetric iron core. Scientific Reports, 2013, 3, 1840.	1.6	7
414	Micron-scale inkjet-assisted digital lithography for large-area flexible electronics. , 2013, , .		7

#	Article	IF	CITATIONS
415	Electron Field Emission from Water-Based Carbon Nanotube Inks. ECS Journal of Solid State Science and Technology, 2015, 4, P3034-P3043.	0.9	7
416	Equivalent Circuit Modeling for a High-Performance Large-Area Organic Photovoltaic Module. IEEE Journal of Photovoltaics, 2015, 5, 1100-1105.	1.5	7
417	Achieving 6.7% Efficiency in P3HT/Indeneâ€C ₇₀ Bisadduct Solar Cells through the Control of Vertical Volume Fraction Distribution and Optimized Regioâ€Isomer Ratios. Advanced Electronic Materials, 2016, 2, 1600362.	2.6	7
418	Coherent quantum transport features in carbon superlattice structures. Scientific Reports, 2016, 6, 35526.	1.6	7
419	X-ray micro-computed tomography as a non-destructive tool for imaging the uptake of metal nanoparticles by graphene-based 3D carbon structures. Nanoscale, 2019, 11, 14734-14741.	2.8	7
420	Zincâ€Based Metal–Organic Frameworks for Highâ€Performance Supercapacitor Electrodes: Mechanism Underlying Pore Generation. Energy and Environmental Materials, 2023, 6, .	7.3	7
421	Thapsigargin blocks electromagnetic fieldâ€elicited intracellular Ca ²⁺ increase in HEK 293 cells. Physiological Reports, 2022, 10, e15189.	0.7	7
422	Smooth thin film C/diamond membranes with controllable optical band gaps. Diamond and Related Materials, 1992, 1, 612-618.	1.8	6
423	Electron Field Emission From Diamond-Like Carbon. Materials Research Society Symposia Proceedings, 1996, 423, 777.	0.1	6
424	The formation of diamond-like carbon films due to molecular impacts on graphite. Diamond and Related Materials, 1998, 7, 1163-1166.	1.8	6
425	Fullerene-like carbon nanoparticles generated by radiofrequency plasma-enhanced chemical vapour deposition. Philosophical Magazine Letters, 1998, 78, 15-19.	0.5	6
426	Studies of carbon ion self-implantation into hydrogenated amorphous carbon films. Diamond and Related Materials, 2000, 9, 675-679.	1.8	6
427	lon beam synthesis of gallium nitride. Nuclear Instruments & Methods in Physics Research B, 2001, 175-177, 678-682.	0.6	6
428	Fabrication of a self-aligned microtip field emission array. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 1560.	1.6	6
429	Dendrimer assisted catalytic growth of mats of multiwall carbon nanofibers. Carbon, 2005, 43, 2229-2231.	5.4	6
430	Deployment of titanium thermal barrier for low-temperature carbon nanotube growth. Applied Physics Letters, 2005, 87, 253115.	1.5	6
431	Dielectric properties of WS2-coated multiwalled carbon nanotubes studied by energy-loss spectroscopic profiling. Applied Physics Letters, 2005, 86, 063112.	1.5	6
432	Field emission from multiwall carbon nanotubes prepared by electrodeposition without the use of a dispersant. Journal of Vacuum Science & Technology B, 2006, 24, 1362.	1.3	6

#	Article	IF	CITATIONS
433	Dielectrophoretic manipulation of fluorescing single-walled carbon nanotubes. Electrophoresis, 2007, 28, 1495-1498.	1.3	6
434	Design of carbon nanotubes for largeâ€area electron fieldâ€emission cathodes. Journal of the Society for Information Display, 2008, 16, 615-624.	0.8	6
435	Continuous-flow laser synthesis of large quantities of iron oxide nanowires in solution. Nanotechnology, 2008, 19, 205604.	1.3	6
436	Improved field emission via laser processing of carbon nanotubes on paper substrates. Journal of Vacuum Science & Technology B, 2009, 27, 1068.	1.3	6
437	On the importance of the electrostatic environment for the transport properties of freestanding multiwall carbon nanotubes. Nanotechnology, 2009, 20, 145202.	1.3	6
438	Field effect in chemical vapour deposited graphene incorporating a polymeric gate dielectric. Synthetic Metals, 2011, 161, 2249-2252.	2.1	6
439	Control of nanocrystal surface defects for efficient charge extraction in polymer-ZnO photovoltaic systems. Journal of Applied Physics, 2012, 112, 066103.	1.1	6
440	Dramatic reductions in water uptake observed in novel POSS nanocomposites based on anhydride-cured epoxy matrix resins. Materials Today Communications, 2015, 4, 186-198.	0.9	6
441	ZnO hybrid photovoltaics with variable side-chain lengths of thienothiophene polymer. Thin Solid Films, 2015, 576, 38-41.	0.8	6
442	Low Impedance Functionalised Carbon Nanotube Electrode Arrays for Electrochemical Detection. Electroanalysis, 2016, 28, 58-62.	1.5	6
443	Integrated Carbon-Fiber-Reinforced Plastic Microstrip Patch Antennas. IEEE Antennas and Wireless Propagation Letters, 2020, 19, 606-610.	2.4	6
444	The role of surface stoichiometry in NO ₂ gas sensing using single and multiple nanobelts of tin oxide. Physical Chemistry Chemical Physics, 2021, 23, 9733-9742.	1.3	6
445	Damage effects in Pyrex by CF4 reactive ion etching in dual RF-microwave plasmas. Micro and Nano Letters, 2006, 1, 103.	0.6	6
446	Highly Sensitive Dopamine Detection Using a Bespoke Functionalised Carbon Nanotube Microelectrode Array. Electroanalysis, 2017, 29, 2365-2376.	1.5	6
447	Interface Regulation by an Ultrathin Wide-Bandgap Halide for Stable and Efficient Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 6702-6713.	4.0	6
448	The Growth of Gallium Nitride Films Produced by Reactive Sputtering at Low Temperature. Physica Status Solidi A, 1999, 176, 319-322.	1.7	5
449	Photoluminescence in low defect density a-C:H and a-C:H:N. Journal of Non-Crystalline Solids, 2000, 266-269, 821-824.	1.5	5
450	Semiconducting hydrogenated carbon–nitrogen alloys with low defect densities. Diamond and Related Materials, 2000, 9, 777-780.	1.8	5

#	Article	IF	CITATIONS
451	Switching phenomena in boron-implanted amorphous carbon films. Diamond and Related Materials, 2001, 10, 1036-1039.	1.8	5
452	Targeting mass-selected cluster ions for the deposition of advanced carbonaceous materials using an inductively coupled plasma. Journal of Applied Physics, 2002, 91, 1819-1827.	1.1	5
453	Electrical transport within polymeric amorphous carbon thin films and the effects of ion implantation. Journal of Applied Physics, 2003, 94, 4470-4476.	1.1	5
454	Energy loss spectroscopic profiling across linear interfaces: The example of amorphous carbon superlattices. Ultramicroscopy, 2006, 106, 346-355.	0.8	5
455	Demixing of Solid-Soluted Co-Pd Binary Alloy Induced by Microwave Plasma Hydrogen Irradiation Technique. Japanese Journal of Applied Physics, 2006, 45, L860-L863.	0.8	5
456	Modification of charge transport in triphenyldiamine films induced by acid oxidized single-walled carbon nanotube interlayers. Nanotechnology, 2008, 19, 485706.	1.3	5
457	Top-Down Heating for Low Substrate Temperature Synthesis of Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 3952-3958.	0.9	5
458	Functionalisation of nylon with carbon nanotubes to make thermally stable fabric and wearable capacitor. Micro and Nano Letters, 2012, 7, 193.	0.6	5
459	Optical nanostructures in 2D for wide-diameter and broadband beam collimation. Scientific Reports, 2016, 6, 18767.	1.6	5
460	Interface passivation and electron transport improvement via employing calcium fluoride for polymer solar cells. Journal of Colloid and Interface Science, 2020, 562, 142-148.	5.0	5
461	Hybrid Multipixel Array X-Ray Detectors for Real-Time Direct Detection of Hard X-Rays. IEEE Transactions on Nuclear Science, 2020, 67, 2238-2245.	1.2	5
462	Field electron emission measurements as a complementary technique to assess carbon nanotube quality. Applied Physics Letters, 2020, 116, .	1.5	5
463	Highâ€Performance Planar Heterojunction Perovskite Solar Cells Based on BaCl ₂ Additive and Power Conversion Efficiency of Over 21%. Advanced Electronic Materials, 2021, 7, 2100165.	2.6	5
464	Increasing the robustness and crack resistivity of high-performance carbon fiber composites for space applications. IScience, 2021, 24, 102692.	1.9	5
465	Effect of Surfactants on the Thermoelectric Performance of Doubleâ&Walled Carbon Nanotubes. Energy and Environmental Materials, 2023, 6, .	7.3	5
466	Phonon transport probed at carbon nanotube yarn/sheet boundaries by ultrafast structural dynamics. Carbon, 2020, 170, 165-173.	5.4	5
467	Electron field emission from amorphous carbon thin films as a function of annealing. Surface and Coatings Technology, 1998, 108-109, 577-582.	2.2	4
468	Laser annealing of low temperature grown gallium nitride. Diamond and Related Materials, 2001, 10, 1311-1313.	1.8	4

#	Article	IF	CITATIONS
469	The electron field emission properties of ion beam synthesised metal-dielectric nanocomposite layers on silicon substrates. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 124-125, 453-457.	1.7	4
470	Forming in hydrogenated amorphous silicon metal-semiconductor-metal devices using bipolar pulse stressing. Electronics Letters, 2005, 41, 98.	0.5	4
471	In situ electrode manipulation for three terminal field emission characterization of individual carbon nanotubes. Applied Physics Letters, 2006, 89, 063111.	1.5	4
472	INTER-LAYER INTERACTION IN DOUBLE-WALLED CARBON NANOTUBES EVIDENCED BY SCANNING TUNNELING MICROSCOPY AND SPECTROSCOPY. Nano, 2008, 03, 65-73.	0.5	4
473	High-resolution temperature sensing with source-gated transistors. , 2011, , .		4
474	Hydrogenated amorphous carbon and carbon nitride films deposited at low pressure by plasma enhanced chemical vapor deposition. Thin Solid Films, 2011, 519, 6374-6380.	0.8	4
475	Dye-assisted dispersion of single-walled carbon nanotubes for solution fabrication of NO2 sensors. AIP Advances, 2012, 2, .	0.6	4
476	Band alignment effects at the metal electrode interface of poly(3-hexylthiophene):zinc oxide hybrid photovoltaics. Applied Physics Letters, 2013, 102, 081607.	1.5	4
477	Filtration properties of hierarchical carbon nanostructures deposited on carbon fibre fabrics. Journal Physics D: Applied Physics, 2015, 48, 115305.	1.3	4
478	Delivering interlaminar reinforcement in composites through electrospun nanofibres. Advanced Manufacturing: Polymer and Composites Science, 2019, 5, 155-171.	0.2	4
479	Protected catalyst growth of graphene and carbon nanotubes. Carbon, 2019, 149, 71-85.	5.4	4
480	Low-Cost Catalyst Ink for Simple Patterning and Growth of High-Quality Single- and Double-Walled Carbon Nanotubes. ACS Applied Materials & Interfaces, 2020, 12, 11898-11906.	4.0	4
481	The Road to Net Zero: A Case Study of Innovative Technologies and Policy Changes Used at a Medium-Sized University to Achieve Czero by 2030. Sustainability, 2021, 13, 9954.	1.6	4
482	Superlattice structures based on amorphous carbon. Journal of Non-Crystalline Solids, 1998, 227-230, 1137-1141.	1.5	3
483	Circuit simulation of current-modulated field emission display pixel driver based on carbon nanotubes. Electronics Letters, 2004, 40, 1113.	0.5	3
484	Surface induced bulk modifications of amorphous carbon nitride films by post-deposition oxygen and hydrogen plasma treatment. Thin Solid Films, 2005, 491, 161-167.	0.8	3
485	Subnanometer-resolved measurement of the tunneling effective mass using bulk plasmons. Applied Physics Letters, 2006, 88, 122109.	1.5	3
486	Electrical conduction and transmission coefficients of suspended multiwalled carbon nanotubes. Nanotechnology, 2007, 18, 295203.	1.3	3

#	Article	IF	CITATIONS
487	Surface morphology and evolution of amorphous carbon thin films. Diamond and Related Materials, 2007, 16, 1777-1781.	1.8	3
488	Bulk electrical properties of singleâ€walled carbon nanotubes immobilized by dielectrophoresis: Evidence of metallic orÂsemiconductor behavior. Electrophoresis, 2008, 29, 2266-2271.	1.3	3
489	Polysilicon Source-Gated Transistors for Mixed-Signal Systems-on-Panel. ECS Transactions, 2010, 33, 419-424.	0.3	3
490	The Effect of pH on the Functionalization of Nylon Fabric with Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2012, 12, 84-90.	0.9	3
491	Solid Lipid Nanoparticles - SLN. , 2012, , 2471-2487.		3
492	Modes of Operation and Optimum Design for Application of Source-Gated Transistors. ECS Transactions, 2013, 50, 65-70.	0.3	3
493	Charge Funneling through Metal Electrode Structuring for Highâ€Efficiency Gains in Polymer Solar Cells. Advanced Electronic Materials, 2016, 2, 1600049.	2.6	3
494	Dataset on the absorption of PCDTBT:PC 70 BM layers and the electro-optical characteristics of air-stable, large-area PCDTBT:PC 70 BM-based polymer solar cell modules, deposited with a custom built slot-die coater. Data in Brief, 2017, 11, 44-48.	0.5	3
495	49dB depletion-load amplifiers with polysilicon source-gated transistors. , 2019, , .		3
496	Influence of A site cation on nonlinear band gap dependence of 2D Ruddlesden–Popper A ₂ Pb _{1â^x} Sn _x 1 ₄ perovskites. Materials Advances, 2021, 2, 5254-5261.	2.6	3
497	Conjugated Polymer/Sn-Doped ZnO Nanowires for Heterojunction Hybrid Solar Cells. Science of Advanced Materials, 2013, 5, 499-504.	0.1	3
498	Hybrid and Nano-composite Carbon Sensing Platforms. , 2015, , 105-132.		3
499	Understanding the bonding mechanisms of organic molecules deposited on graphene for biosensing applications. Journal of Chemical Physics, 2021, 155, 174703.	1.2	3
500	Resonant quenching of photoluminescence in porphyrin-nanocarbon agglomerates. Cell Reports Physical Science, 2022, 3, 100916.	2.8	3
501	Electron Field Emission from Multilayered Tetrahedral Amorphous Carbon Films. Materials Research Society Symposia Proceedings, 1997, 498, 215.	0.1	2
502	Calculation of field enhancement factor and screening effects in carbon nanotube arrays. , 2007, , .		2
503	A Simple and Effective Approach to Improve the Output Linearity of Switched-Current AMOLED Pixel Circuitry. IEEE Electron Device Letters, 2007, 28, 887-889.	2.2	2
504	Switching behaviour and high frequency response of amorphous carbon double-barrier structures. Materials Science and Engineering C, 2007, 27, 957-960.	3.8	2

#	Article	IF	CITATIONS
505	On the elastic constants of amorphous carbon nitride. Diamond and Related Materials, 2008, 17, 1850-1852.	1.8	2
506	Microstructure and local magnetic induction of segmented and alloyed Pd/Co nanocomposites encapsulated inside vertically aligned multiwalled carbon nanotubes. Diamond and Related Materials, 2008, 17, 1525-1528.	1.8	2
507	One-pot rapid low-cost synthesis of Pd-fullerite catalysts. Journal of Materials Chemistry, 2008, 18, 4808.	6.7	2
508	Secondary Nanotube Growth on Aligned Carbon Nanofibre Arrays for Superior Field Emission. Journal of Nanoscience and Nanotechnology, 2008, 8, 2147-2150.	0.9	2
509	Characterisation of electron-beam deposited tungsten interconnects. Journal of Physics: Conference Series, 2008, 126, 012073.	0.3	2
510	Carbon Nanotubes Loaded with Anticancer Drugs: A Platform for Multimodal Cancer Treatment. , 2011, , 223-245.		2
511	Leveraging Contact Effects for Field-Effect Transistor Technologies with Reduced Complexity and Superior Current Uniformity. Materials Research Society Symposia Proceedings, 2013, 1553, 1.	0.1	2
512	Laserâ€induced recoverable fluorescence quenching of perovskite films at a microscopic grainâ€scale. Energy and Environmental Materials, 0, , .	7.3	2
513	Exploring the underlying kinetics of electrodeposited PANI NT composite using distribution of relaxation times. Electrochimica Acta, 2022, 401, 139501.	2.6	2
514	The electronic stability of tin-halide perovskite charged regions. Materials Advances, 2022, 3, 2524-2532.	2.6	2
515	A Route Towards Metal-free Electrical Cables via Carbon Nanotube Wires. Carbon Trends, 2022, 7, 100159.	1.4	2
516	Methods for Estimating Composition of Single Walled Carbon Nanotubes Based on Electronic Type. Materials Science Forum, 0, 1055, 77-86.	0.3	2
517	CO ₂ Emissions Postâ€COP26: Who is Responsible to Curb the Flow? Does it Matter if We Can Make it a Winâ€Win?. Energy and Environmental Materials, 2022, 5, 683-685.	7.3	2
518	Electron field emission from amorphous carbon films as a function of deposition self bias, nitrogen content and substrate resistivity — experiment and simulation. Materials Chemistry and Physics, 2001, 72, 204-209.	2.0	1
519	Formation of Three Dimensional Ni Nanostructures for Large Area Catalysts. Materials Research Society Symposia Proceedings, 2004, 820, 364.	0.1	1
520	Silver intercalated carbon nanotubes. AIP Conference Proceedings, 2005, , .	0.3	1
521	Metal incorporation into nanoporous carbon. Materials Research Society Symposia Proceedings, 2005, 876, 1.	0.1	1

#	Article	IF	CITATIONS
523	Effects of Nanoscale Clustering in Amorphous Carbon. , 0, , 137-152.		1
524	Growth of tungsten oxide nanowires using simple thermal heating. , 0, , .		1
525	Improving the electron emission properties of ion-beam-synthesized Ag–SiO2 nanocomposites by pulsed laser annealing. Journal of Vacuum Science & Technology B, 2008, 26, 860-863.	1.3	1
526	In-situ electrical characterisation of suspended multiwalled carbon nanotubes. Journal of Physics: Conference Series, 2008, 126, 012032.	0.3	1
527	Nano Engineered Organic-Inorganic Material Systems for Photovoltaics. Advanced Materials Research, 2009, 67, 1-6.	0.3	1
528	Polysilicon Source-Gated Transistors for Mixed-Signal Systems-on-Panel. ECS Meeting Abstracts, 2010, ,	0.0	1
529	Enhanced Performance from Acid Functionalised Multiwall Carbon Nanotubes in the Active Layer of Organic Bulk Heterojunction Solar Cells. Materials Research Society Symposia Proceedings, 2010, 1270, 1.	0.1	1
530	Performance trade-offs in polysilicon source-gated transistors. , 2010, , .		1
531	The origin of the metal enrichment of carbon nanostructures produced by laser ablation of a carbon–nickel target. Carbon, 2012, 50, 5505-5520.	5.4	1
532	Bulk Barrier Source-Gated Transistors with Improved Drain Current Dynamic Range and Temperature Coefficient. ECS Transactions, 2015, 67, 91-96.	0.3	1
533	Improvement in the Electrical Properties of Nickelâ€Plated Steel Using Graphitic Carbon Coatings. Advanced Engineering Materials, 2019, 21, 1900408.	1.6	1
534	Controlling the macroscopic electrical properties of reduced graphene oxide by nanoscale writing of electronic channels. Nanotechnology, 2021, 32, 175202.	1.3	1
535	Band-Gap Modification Induced in HgTe by Dimensional Constraint in Carbon Nanotubes: Effect of Nanotube Diameter on Microstructure. Springer Proceedings in Physics, 2008, , 213-216.	0.1	1
536	Gas Sensing Properties of Vapour-Deposited Tungsten Oxide Nanostructures. Springer Proceedings in Physics, 2008, , 281-284.	0.1	1
537	Synthesis of Carbon Nanotubes. , 2016, , 4003-4010.		1
538	Amorphous semiconductors for cold cathodes: A route to large-area flat-panel displays. Journal of the Society for Information Display, 2000, 8, 17.	0.8	0
539	Current-induced conditioning of hydrogenated amorphous carbon thin films for field emission. Diamond and Related Materials, 2001, 10, 873-877.	1.8	0
540	Memory Switching in Ion Bombarded Amorphous Silicon Carbide Thin Film Devices. Materials Research Society Symposia Proceedings, 2002, 742, 231.	0.1	0

#	Article	IF	CITATIONS
541	Effect of conductive filaments on the electron emission properties in cathodes. , 0, , .		Ο
542	Influence of stress on the field emission properties of amorphous carbon thin films and multiwall carbon nanotube-polymer composites. , 0, , .		0
543	Growth kinetics changes of vertically aligned carbon nanostructures synthesised at low substrate temperatures. Materials Research Society Symposia Proceedings, 2004, 858, 192.	0.1	0
544	Simulation of field enhancement effects in carbon nanotubes. , 0, , .		0
545	Ion-Beam-Synthesised Ag-SiO2 Nanocomposite Layers for Electron Field Emission Devices. Materials Research Society Symposia Proceedings, 2005, 908, 1.	0.1	0
546	Metal Oxides and Low Temperature SWCNT Synthesis via Laser Evaporation. AIP Conference Proceedings, 2005, , .	0.3	0
547	Carbon nanotubes and nanostructures grown at below 400°C. Materials Research Society Symposia Proceedings, 2005, 901, 1.	0.1	0
548	Microstructure analyses of metal-filled carbon nanotubes synthesized by microwave plasma-enhanced chemical vapour deposition. , 0, , .		0
549	Novel approach to low substrate temperature synthesis of carbon nanotubes. , 0, , .		Ο
550	Novel Semiconducting Phase of Amorphous Carbon Nickel Composite Films. Materials Research Society Symposia Proceedings, 2006, 910, 4.	0.1	0
551	The interaction of nanostructured biomaterials with human cell cultures. The choice of cell cultures for use as biocompatability probes. , 2006, , 205-214.		Ο
552	Electrical properties and carrier transport mechanisms of nanometer-scale ultra-thin channel poly-Si transistors. , 2006, , .		0
553	Electron Field Emission from Carbon Nanotubes. , 2006, , .		Ο
554	Laser ablation of thin carbon nanotube films on glass substrates as transparent field emitters. , 2007, ,		0
555	An Efficient Macromodeling Approach for Simulating Carbon-Nanotube Field-Emission Triode Devices in Display Applications. IEEE Electron Device Letters, 2007, 28, 710-712.	2.2	Ο
556	In-situ field emission characterisation of multi walled carbon nanotubes. , 2007, , .		0
557	Field emission from multiwall carbon nanotubes on flexible paper substrates. , 2007, , .		0
558	Li-salt functionalised carbon nanotubes as low work function field emitters. , 2007, , .		0

#	Article	IF	CITATIONS
559	A study of field emission from glass spheres, coated with carbon nanotubes. , 2007, , .		0
560	Radiation trapping in LiF ablation plumes. Journal of Physics: Conference Series, 2007, 59, 745-748.	0.3	0
561	Novel carbon nanotube based three terminal devices. , 2007, , .		0
562	Improving the electron emission properties of ion-beam-synthesized Ag-Si0 <inf>2</inf> nanocomposites by pulsed laser annealing. , 2007, , .		0
563	Modelling of electron transfer from a carbon nanotube cap into the vacuum under high extraction fields. , 2007, , .		0
564	Engineering the shape of Zinc Oxide crystals via sonochemical or hydrothermal solution-based methods. Materials Research Society Symposia Proceedings, 2008, 1087, 60401.	0.1	0
565	<i>In situ</i> field emission characterization of multiwalled carbon nanotubes. Journal of Vacuum Science & Technology B, 2008, 26, 842-846.	1.3	0
566	Sequential and resonant field emission from nano-structured cathodes. , 2009, , .		0
567	Interfacial Energy Level Alignment at Acid Oxidized Carbon Nanotube - Triphenyldiamine Contacts. Materials Research Society Symposia Proceedings, 2010, 1258, 1.	0.1	0
568	Effect of Transparent Electrode on the Performance of Bulk Heterojunction Solar Cells. Materials Research Society Symposia Proceedings, 2010, 1270, 1.	0.1	0
569	P2–29: Electron tunneling from a 3D nano-sphere. , 2010, , .		0
570	A bottom-up materials design approach for sustainable energy. , 2010, , .		0
571	Influence of Structural Defects on the Electronic Properties of Carbon Nanotubes Examined by Scanning Tunnelling Microscopy. Materials Research Society Symposia Proceedings, 2010, 1258, 1.	0.1	0
572	Performance improvements in polysilicon source-gated transistors. , 2010, , .		0
573	Direct catalytic growth of high-density carbon nanotubes on nanoclusters at low temperatures. , 2010, , .		0
574	Uptake, Intracellular Localization and Biodistribution of Carbon Nanotubes. Carbon Nanostructures, 2011, , 169-182.	0.1	0
575	Raman analysis of oxide cladded silicon core nanowires grown with solid silicon feed stock. Journal of Nanoparticle Research, 2011, 13, 2697-2703.	0.8	0

#	Article	IF	CITATIONS
577	siRNA Delivery. , 2012, , 2429-2429.		Ο
578	Electron field emission from carbon nanotubes. , 2012, , .		0
579	Alter the sheet resistance of carbon nanotube-coated cellulose fabric with argon plasma pretreatment. Micro and Nano Letters, 2012, 7, 850.	0.6	0
580	Small-Angle Scattering. , 2012, , 2437-2437.		0
581	Silver (Ag). , 2012, , 2420-2420.		0
582	Synthesis of Subnanometric Metal Nanoparticles. , 2012, , 2639-2648.		0
583	Surface Plasmon Enhanced Optical Bistability and Optical Switching. , 2012, , 2583-2591.		0
584	Smart Carbon Nanotube-Polymer Composites. , 2012, , 2451-2451.		0
585	Structural properties of mirrored carbon spirals as revealed by scanning electron microscopy and micro-Raman spectroscopy. Physica Status Solidi (B): Basic Research, 2013, 250, 2737-2740.	0.7	0
586	Effect of solution processed and thermally evaporated interlayers on the performance of backgrated polymer solar cells. Thin Solid Films, 2015, 591, 159-163.	0.8	0
587	Using Molecular Simulation to Explore Unusually Low Moisture Uptake in Amine ured Epoxy Carbon Fiber Reinforced Nanocomposites. Macromolecular Chemistry and Physics, 2016, 217, 1282-1292.	1.1	0
588	Layer-by-Layer Growth of Graphene Sheets over Selected Areas for Semiconductor Device Applications. ACS Applied Nano Materials, 2021, 4, 5211-5219.	2.4	0
589	Nanocarbons for emerging photovoltaic applications. , 2021, , 49-80.		0
590	Synthesis of Carbon Nanotubes. , 2015, , 1-9.		0
591	Electron energy loss line spectral and TEM analysis of heterojunctions. , 2018, , 41-44.		0
592	Flexible, biocompatible, and ridged silicone elastomers based robust sandwich-type triboelectric nanogenerator. , 2021, , .		0