
Grzegorz Szczepaniak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2564994/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Red-Light-Induced, Copper-Catalyzed Atom Transfer Radical Polymerization. ACS Macro Letters, 2022, 11, 376-381.	2.3	33
2	Controlled Release of Exosomes Using Atom Transfer Radical Polymerization-Based Hydrogels. Biomacromolecules, 2022, 23, 1713-1722.	2.6	17
3	Reflection on the Matyjaszewski Lab Webinar Series and the Rise of Webinars in Polymer Chemistry. ACS Macro Letters, 2021, 10, 54-59.	2.3	1
4	Making ATRP More Practical: Oxygen Tolerance. Accounts of Chemical Research, 2021, 54, 1779-1790.	7.6	93
5	Larger scale Stahl oxidation with instant Cu removal in convenient synthesis of chiral bidentate N–heterocyclic carbene precursor. Polyhedron, 2021, 199, 115090.	1.0	1
6	Conjugated Cross-linked Phenothiazines as Green or Red Light Heterogeneous Photocatalysts for Copper-Catalyzed Atom Transfer Radical Polymerization. Journal of the American Chemical Society, 2021, 143, 9630-9638.	6.6	68
7	Biocompatible photoinduced CuAAC using sodium pyruvate. Chemical Communications, 2021, 57, 12844-12847.	2.2	5
8	lodine-mediated photoATRP in aqueous media with oxygen tolerance. Polymer Chemistry, 2020, 11, 843-848.	1.9	31
9	Fully oxygen-tolerant atom transfer radical polymerization triggered by sodium pyruvate. Chemical Science, 2020, 11, 8809-8816.	3.7	54
10	p â€Substituted Tris(2â€pyridylmethyl)amines as Ligands for Highly Active ATRP Catalysts: Facile Synthesis and Characterization. Angewandte Chemie, 2020, 132, 15020-15030.	1.6	2
11	<i>p</i> â€Substituted Tris(2â€pyridylmethyl)amines as Ligands for Highly Active ATRP Catalysts: Facile Synthesis and Characterization. Angewandte Chemie - International Edition, 2020, 59, 14910-14920.	7.2	32
12	An isocyanide ligand for the rapid quenching and efficient removal of copper residues after Cu/TEMPO-catalyzed aerobic alcohol oxidation and atom transfer radical polymerization. Chemical Science, 2020, 11, 4251-4262.	3.7	23
13	A Gentler Touch: Synthesis of Modern Ruthenium Olefin Metathesis Catalysts Sustained by Mechanical Force. ChemCatChem, 2019, 11, 5362-5369.	1.8	14
14	Impact of Organometallic Intermediates on Copper-Catalyzed Atom Transfer Radical Polymerization. Macromolecules, 2019, 52, 4079-4090.	2.2	42
15	Preparation of Well-Defined Polymers and DNA–Polymer Bioconjugates via Small-Volume eATRP in the Presence of Air. ACS Macro Letters, 2019, 8, 603-609.	2.3	58
16	Semiheterogeneous Purification Protocol for the Removal of Ruthenium Impurities from Olefin Metathesis Reaction Products Using an Isocyanide Scavenger. Organic Process Research and Development, 2019, 23, 836-844.	1.3	22
17	Highly efficient and time economical purification of olefin metathesis products from metal residues using an isocyanide scavenger. Green Chemistry, 2018, 20, 1280-1289.	4.6	33
18	Ruthenium Olefin Metathesis Catalysts Systematically Modified in Chelating Benzylidene Ether Fragment: Experiment and Computations. European Journal of Inorganic Chemistry, 2018, 2018, 3675-3685.	1.0	12

GRZEGORZ SZCZEPANIAK

#	Article	IF	CITATIONS
19	High-Performance Isocyanide Scavengers for Use in Low-Waste Purification of Olefin Metathesis Products. ChemSusChem, 2015, 8, 4099-4099.	3.6	2
20	Highâ€Performance Isocyanide Scavengers for Use in Lowâ€Waste Purification of Olefin Metathesis Products. ChemSusChem, 2015, 8, 4139-4148.	3.6	37
21	Towards "cleaner―olefin metathesis: tailoring the NHC ligand of second generation ruthenium catalysts to afford auxiliary traits. Green Chemistry, 2014, 16, 4474-4492.	4.6	65
22	Dialkylgallium Complexes with Alkoxide and Aryloxide Ligands Possessing N-Heterocyclic Carbene Functionalities: Synthesis and Structure. Organometallics, 2014, 33, 100-111.	1.1	25
23	Stable ruthenium indenylidene complexes with a sterically reduced NHC ligand. Chemical Communications, 2013, 49, 3188.	2.2	37
24	The influence of organosuperbases on the structure and activity of dialkylgallium alkoxides in the polymerization of <i>rac</i> â€lactide: the road to stereo diblock PLA copolymers. Applied Organometallic Chemistry, 2013, 27, 328-336.	1.7	28
25	Easily removable olefin metathesis catalysts. Green Chemistry, 2012, 14, 3264.	4.6	60
26	The first facile stereoselectivity switch in the polymerization of rac-lactide—from heteroselective to isoselective dialkylgallium alkoxides with the help of N-heterocyclic carbenes. Chemical Communications, 2012, 48, 1171-1173.	2.2	80
27	Highly active catalysts for olefin metathesis in water. Catalysis Science and Technology, 2012, 2, 2424.	2.1	105

Kinetic comparison of isomeric oligo(ethylene oxide) (meth)acrylates: Aqueous polymerization of oligo(ethylene oxide) methyl ether methacrylate and methyl 2â€(oligo(ethylene oxide) methyl) Tj ETQq0 0 0 rgBT /Øærlock 10 Tf 50 37 28