Tatyana V Fedorova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2564866/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of plant phenolic compounds by cyclic voltammetry. Applied Biochemistry and Microbiology, 2007, 43, 661-668.	0.3	78
2	Structure of native laccase fromTrametes hirsutaat 1.8â€Ã resolution. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 611-617.	2.5	56
3	Evaluation of the Antiradical Properties of Phenolic Acids. International Journal of Molecular Sciences, 2014, 15, 16351-16380.	1.8	56
4	Physicochemical and functional properties of Cucurbita maxima pumpkin pectin and commercial citrus and apple pectins: A comparative evaluation. PLoS ONE, 2018, 13, e0204261.	1.1	55
5	Catalytic Efficiency of Basidiomycete Laccases: Redox Potential versus Substrate-Binding Pocket Structure. Catalysts, 2018, 8, 152.	1.6	41
6	The Trametes hirsuta 072 laccase multigene family: Genes identification and transcriptional analysis under copper ions induction. Biochimie, 2015, 116, 154-164.	1.3	39
7	Lignin-degrading peroxidases in white-rot fungus Trametes hirsuta 072. Absolute expression quantification of full multigene family. PLoS ONE, 2017, 12, e0173813.	1.1	35
8	Fungal Laccases: The Forefront of Enzymes for Sustainability. Journal of Fungi (Basel, Switzerland), 2021, 7, 1048.	1.5	32
9	Structure-Functional Study of Tyrosine and Methionine Dipeptides: An Approach to Antioxidant Activity Prediction. International Journal of Molecular Sciences, 2015, 16, 25353-25376.	1.8	30
10	Orchestration of the expression of the laccase multigene family in white-rot basidiomycete Trametes hirsuta 072: Evidences of transcription level subfunctionalization. Fungal Biology, 2018, 122, 353-362.	1.1	29
11	An in vitro and in silico study on the antioxidant and cell culture-based study on the chemoprotective activities of fish muscle protein hydrolysates obtained from European seabass and gilthead seabream. Food Chemistry, 2019, 271, 724-732.	4.2	28
12	Properties of neutral cellobiose dehydrogenase from the ascomycete Chaetomium sp. INBI 2-26(–) and comparison with basidiomycetous cellobiose dehydrogenases. Journal of Biotechnology, 2006, 121, 34-48.	1.9	27
13	Development of Antioxidant and Antihypertensive Properties during Growth of Lactobacillus helveticus, Lactobacillus rhamnosus and Lactobacillus reuteri on Cow's Milk: Fermentation and Peptidomics Study. Foods, 2021, 10, 17.	1.9	27
14	Evolutionary Relationships Between the Laccase Genes of Polyporales: Orthology-Based Classification of Laccase Isozymes and Functional Insight From Trametes hirsuta. Frontiers in Microbiology, 2019, 10, 152.	1.5	25
15	Draft Genome Sequence of the Fungus Trametes hirsuta 072. Genome Announcements, 2015, 3, .	0.8	24
16	Elucidation of the crystal structure of <i>Coriolopsis caperata</i> laccase: restoration of the structure and activity of the native enzyme from the T2-depleted form by copper ions. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 854-861.	2.5	21
17	Structure-function study of two new middle-redox potential laccases from basidiomycetes Antrodiella faginea and Steccherinum murashkinskyi. International Journal of Biological Macromolecules, 2018, 118, 406-418.	3.6	21
18	White-rot basidiomycetes Junghuhnia nitida and Steccherinum bourdotii: Oxidative potential and laccase properties in comparison with Trametes hirsuta and Coriolopsis caperata. PLoS ONE, 2018, 13, e0197667.	1.1	19

TATYANA V FEDOROVA

#	Article	IF	CITATIONS
19	A heterologous production of the Trametes hirsuta laccase in the fungus Penicillium canescens. Applied Biochemistry and Microbiology, 2010, 46, 313-317.	0.3	18
20	The subatomic resolution study of laccase inhibition by chloride and fluoride anions using single-crystal serial crystallography: insights into the enzymatic reaction mechanism. Acta Crystallographica Section D: Structural Biology, 2019, 75, 804-816.	1.1	17
21	Whey Protein Hydrolysate and Pumpkin Pectin as Nutraceutical and Prebiotic Components in a Functional Mousse with Antihypertensive and Bifidogenic Properties. Nutrients, 2019, 11, 2930.	1.7	16
22	Kinetic and Theoretical Comprehension of Diverse Rate Laws and Reactivity Gaps inCoriolus hirsutusLaccase-Catalyzed Oxidation of Acido and Cyclometalated RullComplexes. Biochemistry, 2009, 48, 4519-4527.	1.2	15
23	Purification, biochemical characterization, and structure of recombinant endo-1,4-β-xylanase XylE. Biochemistry (Moscow), 2012, 77, 1190-1198.	0.7	15
24	Laccases with Variable Properties from Different Strains of Steccherinum ochraceum: Does Glycosylation Matter?. International Journal of Molecular Sciences, 2019, 20, 2008.	1.8	14
25	Fungal Adaptation to the Advanced Stages of Wood Decomposition: Insights from the Steccherinum ochraceum. Microorganisms, 2019, 7, 527.	1.6	13
26	Relation between lignin molecular profile and fungal exo-proteome during kraft lignin modification by Trametes hirsuta LE-BIN 072. Bioresource Technology, 2021, 335, 125229.	4.8	13
27	Purification and Characterization of Two Novel Laccases from Peniophora lycii. Journal of Fungi (Basel, Switzerland), 2020, 6, 340.	1.5	12
28	Exoproteome Analysis of Antagonistic Interactions between the Probiotic Bacteria Limosilactobacillus reuteri LR1 and Lacticaseibacillus rhamnosus F and Multidrug Resistant Strain of Klebsiella pneumonia. International Journal of Molecular Sciences, 2021, 22, 10999.	1.8	11
29	Analytical Characterization of the Widely Consumed Commercialized Fermented Beverages from Russia (Kefir and Ryazhenka) and South Africa (Amasi and Mahewu): Potential Functional Properties and Profiles of Volatile Organic Compounds. Foods, 2021, 10, 3082.	1.9	11
30	Biotransformation of progesterone by Aspergillus nidulans VKPM F-1069 (wild type). Steroids, 2019, 149, 108421.	0.8	9
31	Cheese Whey Catalytic Conversion for Obtaining a Bioactive Hydrolysate With Reduced Antigenicity. Current Research in Nutrition and Food Science, 2016, 4, 182-196.	0.3	9
32	Transformation of humic substances of highly oxidized brown coal by basidiomycetes Trametes hirsuta and Trametes maxima. Applied Biochemistry and Microbiology, 2013, 49, 287-295.	0.3	8
33	Fermentation Profile and Probiotic-Related Characteristics of Bifidobacterium longum MC-42. Fermentation, 2021, 7, 101.	1.4	7
34	Agaricus bisporus Crude Extract: Characterization and Analytical Application. Molecules, 2020, 25, 5996.	1.7	6
35	Hypotensive and Hepatoprotective Properties of the Polysaccharide-Stabilized Foaming Composition Containing Hydrolysate of Whey Proteins. Nutrients, 2021, 13, 1031.	1.7	6
36	Effect of submerged cultivation conditions and inducers on biosynthesis of extracellular laccase by a Trametes versicolor 1666 strain. Applied Biochemistry and Microbiology, 2011, 47, 808-816.	0.3	5

Tatyana V Fedorova

#	Article	IF	CITATIONS
37	Preparation and characterization of bioactive products obtained via the solubilization of brown coal by white rot fungi. Applied Biochemistry and Microbiology, 2014, 50, 730-736.	0.3	5
38	Development of a novel enzyme-redox-mediator system based on a fungal laccase and ruthenium complexes. Applied Biochemistry and Microbiology, 2006, 42, 550-557.	0.3	3
39	Effect of solvent phase transitions on enzymatic activity and structure of laccase from Coriolus hirsutus. Biochemistry (Moscow), 2009, 74, 385-392.	0.7	3
40	Comparative analysis of the white rot fungus <i>Trametes hirsuta</i> 072 laccases ability to modify 17 ¹² -oestradiol in the aqueous medium. Biocatalysis and Biotransformation, 2023, 41, 475-485.	1.1	0