Xuegong Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2564478/publications.pdf Version: 2024-02-01

XUECONC YU

#	Article	IF	CITATIONS
1	Hierarchical NiCo ₂ O ₄ Hollow Microcuboids as Bifunctional Electrocatalysts for Overall Waterâ€Splitting. Angewandte Chemie - International Edition, 2016, 55, 6290-6294.	13.8	722
2	Hierarchical NiCo ₂ O ₄ Hollow Microcuboids as Bifunctional Electrocatalysts for Overall Water‧plitting. Angewandte Chemie, 2016, 128, 6398-6402.	2.0	536
3	Enhanced Electronic Properties of SnO ₂ <i>via</i> Electron Transfer from Graphene Quantum Dots for Efficient Perovskite Solar Cells. ACS Nano, 2017, 11, 9176-9182.	14.6	302
4	Seed-assisted cast quasi-single crystalline silicon for photovoltaic application: Towards high efficiency and low cost silicon solar cells. Solar Energy Materials and Solar Cells, 2012, 101, 95-101.	6.2	146
5	Thin Czochralski silicon solar cells based on diamond wire sawing technology. Solar Energy Materials and Solar Cells, 2012, 98, 337-342.	6.2	115
6	Efficient and highly light stable planar perovskite solar cells with graphene quantum dots doped PCBM electron transport layer. Nano Energy, 2017, 40, 345-351.	16.0	101
7	Interface engineering for efficient and stable chemical-doping-free graphene-on-silicon solar cells by introducing a graphene oxide interlayer. Journal of Materials Chemistry A, 2014, 2, 16877-16883.	10.3	93
8	Ink Engineering of Inkjet Printing Perovskite. ACS Applied Materials & Interfaces, 2020, 12, 39082-39091.	8.0	85
9	Direct CVD Growth of Graphene on Technologically Important Dielectric and Semiconducting Substrates. Advanced Science, 2018, 5, 1800050.	11.2	81
10	Trap Assisted Bulk Silicon Photodetector with High Photoconductive Gain, Low Noise, and Fast Response by Ag Hyperdoping. Advanced Optical Materials, 2018, 6, 1700638.	7.3	75
11	Improved performance and air stability of planar perovskite solar cells via interfacial engineering using a fullerene amine interlayer. Nano Energy, 2016, 28, 330-337.	16.0	74
12	High Performance Nanostructured Silicon–Organic Quasi <i>p</i> – <i>n</i> Junction Solar Cells <i>via</i> Low-Temperature Deposited Hole and Electron Selective Layer. ACS Nano, 2016, 10, 704-712.	14.6	74
13	Interface coupling in graphene/fluorographene heterostructure for high-performance graphene/silicon solar cells. Nano Energy, 2016, 28, 12-18.	16.0	73
14	An 8.68% Efficiency Chemically-Doped-Free Graphene–Silicon Solar Cell Using Silver Nanowires Network Buried Contacts. ACS Applied Materials & Interfaces, 2015, 7, 4135-4141.	8.0	64
15	Enhanced performance and light soaking stability of planar perovskite solar cells using an amine-based fullerene interfacial modifier. Journal of Materials Chemistry A, 2016, 4, 18509-18515.	10.3	62
16	Perovskite Bifunctional Device with Improved Electroluminescent and Photovoltaic Performance through Interfacial Energyâ€Band Engineering. Advanced Materials, 2019, 31, e1902543.	21.0	62
17	High Efficiency Organic/Silicon-Nanowire Hybrid Solar Cells: Significance of Strong Inversion Layer. Scientific Reports, 2015, 5, 17371.	3.3	58
18	Stabilizing Fullerene for Burnâ€inâ€Free and Stable Perovskite Solar Cells under Ultraviolet Preconditioning and Light Soaking. Advanced Materials, 2021, 33, e2006910.	21.0	52

#	Article	IF	CITATIONS
19	Bioinspired molecules design for bilateral synergistic passivation in buried interfaces of planar perovskite solar cells. Nano Research, 2022, 15, 1069-1078.	10.4	52
20	Selfâ€Organized Fullerene Interfacial Layer for Efficient and Lowâ€Temperature Processed Planar Perovskite Solar Cells with High UV‣ight Stability. Advanced Science, 2017, 4, 1700018.	11.2	47
21	Higher quality mono-like cast silicon with induced grain boundaries. Solar Energy Materials and Solar Cells, 2015, 140, 121-125.	6.2	45
22	A review of theoretical study of graphene chemical vapor deposition synthesis on metals: nucleation, growth, and the role of hydrogen and oxygen. Reports on Progress in Physics, 2018, 81, 036501.	20.1	43
23	An Interlayer with Strong Pb-Cl Bond Delivers Ultraviolet-Filter-Free, Efficient, and Photostable Perovskite Solar Cells. IScience, 2019, 21, 217-227.	4.1	43
24	High and Fast Response of a Graphene–Silicon Photodetector Coupled with 2D Fractal Platinum Nanoparticles. Advanced Optical Materials, 2018, 6, 1700793.	7.3	42
25	The enhanced efficiency of graphene–silicon solar cells by electric field doping. Nanoscale, 2015, 7, 7072-7077.	5.6	41
26	Graphene coupled with Pt cubic nanoparticles for high performance, air-stable graphene-silicon solar cells. Nano Energy, 2017, 32, 225-231.	16.0	38
27	Mitigating Ion Migration by Polyethylene Glycol-Modified Fullerene for Perovskite Solar Cells with Enhanced Stability. ACS Energy Letters, 2021, 6, 3864-3872.	17.4	36
28	A ternary organic electron transport layer for efficient and photostable perovskite solar cells under full spectrum illumination. Journal of Materials Chemistry A, 2018, 6, 5566-5573.	10.3	35
29	Simultaneous Passivation of the SnO ₂ /Perovskite Interface and Perovskite Absorber Layer in Perovskite Solar Cells Using KF Surface Treatment. ACS Applied Energy Materials, 2021, 4, 10921-10930.	5.1	35
30	Wetting behaviors and applications of metal-catalyzed CVD grown graphene. Journal of Materials Chemistry A, 2018, 6, 22437-22464.	10.3	33
31	Performance Improvement of Graphene/Silicon Photodetectors Using High Work Function Metal Nanoparticles with Plasma Effect. Advanced Optical Materials, 2018, 6, 1701243.	7.3	32
32	CH ₃ NH ₃ PbBr ₃ Quantum Dot-Induced Nucleation for High Performance Perovskite Light-Emitting Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 22320-22328.	8.0	32
33	Multicrystalline silicon crystal assisted by silicon flakes as seeds. Solar Energy Materials and Solar Cells, 2018, 174, 202-205.	6.2	27
34	Vacuum co-deposited CH3NH3PbI3 films by controlling vapor pressure for efficient planar perovskite solar cells. Solar Energy, 2019, 181, 339-344.	6.1	26
35	Highly efficient and stable inorganic CsPbBr3 perovskite solar cells via vacuum co-evaporation. Applied Surface Science, 2021, 562, 150153.	6.1	26
36	Ambient Engineering for High-Performance Organic–Inorganic Perovskite Hybrid Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 21505-21511.	8.0	25

#	Article	IF	CITATIONS
37	Amine treatment induced perovskite nanowire network in perovskite solar cells: efficient surface passivation and carrier transport. Nanotechnology, 2018, 29, 065401.	2.6	25
38	Seedâ€Assisted Growth of Castâ€Mono Silicon for Photovoltaic Application: Challenges and Strategies. Solar Rrl, 2020, 4, 1900486.	5.8	25
39	Fulleropyrrolidinium Iodide As an Efficient Electron Transport Layer for Air-Stable Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 34612-34619.	8.0	24
40	Modulation of atomic-layer-deposited Al2O3 film passivation of silicon surface by rapid thermal processing. Applied Physics Letters, 2011, 99, .	3.3	23
41	Highly Pure and Luminescent Graphene Quantum Dots on Silicon Directly Grown by Chemical Vapor Deposition. Particle and Particle Systems Characterization, 2016, 33, 8-14.	2.3	23
42	New Insight into the Metal-Catalyst-Free Direct Chemical Vapor Deposition Growth of Graphene on Silicon Substrates. Journal of Physical Chemistry C, 2021, 125, 1774-1783.	3.1	23
43	Efficiency improvement of silicon solar cells enabled by ZnO nanowhisker array coating. Nanoscale Research Letters, 2012, 7, 306.	5.7	22
44	Surface plasmon enhanced luminescence from organic-inorganic hybrid perovskites. Applied Physics Letters, 2017, 110, 233113.	3.3	22
45	High-Performance Ultrathin Organic–Inorganic Hybrid Silicon Solar Cells via Solution-Processed Interface Modification. ACS Applied Materials & Interfaces, 2017, 9, 21723-21729.	8.0	22
46	Progress of Graphene–Silicon Heterojunction Photovoltaic Devices. Advanced Materials Interfaces, 2018, 5, 1801520.	3.7	22
47	Towards green antisolvent for efficient CH3NH3PbBr3 perovskite light emitting diodes: A comparison of toluene, chlorobenzene, and ethyl acetate. Applied Physics Letters, 2019, 115, .	3.3	22
48	A review on graphene-silicon Schottky junction interface. Journal of Alloys and Compounds, 2019, 806, 63-70.	5.5	22
49	Low-temperature processed tantalum/niobium co-doped TiO ₂ electron transport layer for high-performance planar perovskite solar cells. Nanotechnology, 2021, 32, 245201.	2.6	21
50	Manipulating the film morphology evolution toward green solventâ€processed perovskite solar cells. SusMat, 2021, 1, 537-544.	14.9	21
51	Interface engineering and efficiency improvement of monolayer graphene–silicon solar cells by inserting an ultra-thin LiF interlayer. RSC Advances, 2015, 5, 46480-46484.	3.6	20
52	Illuminationâ€Induced Hole Doping for Performance Improvement of Graphene/nâ€Silicon Solar Cells with P3HT Interlayer. Advanced Electronic Materials, 2017, 3, 1600516.	5.1	20
53	Designing functional Σ13 grain boundaries at seed junctions for high-quality cast quasi-single crystalline silicon. Solar Energy Materials and Solar Cells, 2019, 200, 109985.	6.2	20
54	Two-peak characteristic distribution of iron impurities at the bottom of cast quasi-single-crystalline silicon ingot. Scripta Materialia, 2013, 68, 655-657.	5.2	19

#	Article	IF	CITATIONS
55	Experimental evidence of staggered oxygen dimers as a component of boron-oxygen complexes in silicon. Applied Physics Letters, 2013, 102, .	3.3	19
56	Wetting Behavior of Metal-Catalyzed Chemical Vapor Deposition-Grown One-Dimensional Cubic-SiC Nanostructures. Langmuir, 2018, 34, 5214-5224.	3.5	19
57	Direct Growth of Graphene Nanowalls on Silicon Using Plasma-Enhanced Atomic Layer Deposition for High-Performance SI-Based Infrared Photodetectors. ACS Applied Electronic Materials, 2021, 3, 5048-5058.	4.3	19
58	CVD Graphene on Textured Silicon: An Emerging Technologically Versatile Heterostructure for Energy and Detection Applications. Advanced Materials Interfaces, 2022, 9, .	3.7	19
59	Self-generation of a quasi p–n junction for high efficiency chemical-doping-free graphene/silicon solar cells using a transition metal oxide interlayer. Journal of Materials Chemistry A, 2016, 4, 10558-10565.	10.3	18
60	Light-induced beneficial ion accumulation for high-performance quasi-2D perovskite solar cells. Energy and Environmental Science, 2022, 15, 2499-2507.	30.8	18
61	Controlling dislocation gliding and propagation in quasi-single crystalline silicon by using <110>-oriented seeds. Solar Energy Materials and Solar Cells, 2019, 193, 214-218.	6.2	17
62	CsPbBr ₃ quantum dots assisted crystallization of solution-processed perovskite films with preferential orientation for high performance perovskite solar cells. Nanotechnology, 2020, 31, 085401.	2.6	17
63	Room-temperature processed, air-stable and highly efficient graphene/silicon solar cells with an organic interlayer. Journal of Materials Chemistry A, 2016, 4, 11284-11291.	10.3	16
64	Grain boundary engineering of high performance multicrystalline silicon: Control of iron contamination at the ingot edge. Solar Energy Materials and Solar Cells, 2017, 171, 131-135.	6.2	16
65	Graphene/Si Heterostructure with an Organic Interfacial Layer for a Self-Powered Photodetector with a High ON/OFF Ratio. ACS Applied Electronic Materials, 2022, 4, 1715-1722.	4.3	16
66	Al2O3-Interlayer-Enhanced Performance of All-Inorganic Silicon-Quantum-Dot Near-Infrared Light-Emitting Diodes. IEEE Transactions on Electron Devices, 2018, 65, 577-583.	3.0	15
67	All-vacuum deposited and thermally stable perovskite solar cells with F4-TCNQ/CuPc hole transport layer. Nanotechnology, 2020, 31, 065401.	2.6	14
68	Synergistic effects of bithiophene ammonium salt for high-performance perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 9971-9980.	10.3	14
69	An industrial solution to light-induced degradation of crystalline silicon solar cells. Frontiers in Energy, 2017, 11, 67-71.	2.3	13
70	Interface engineering of C60/ fluorine doped tin oxide on the photovoltaic performance of perovskite solar cells using the physical vapor deposition technique. Journal Physics D: Applied Physics, 2019, 52, 225104.	2.8	13
71	Nitrogen in Silicon. Defect and Diffusion Forum, 2004, 230-232, 199-220.	0.4	12
72	Effect of germanium on the kinetics of boron-oxygen defect generation and dissociation in Czochralski silicon. Applied Physics Letters, 2010, 97, 162107.	3.3	12

#	Article	IF	CITATIONS
73	Towards thinner and low bowing silicon solar cells: form the boron and aluminum coâ€doped back surface field with thinner metallization film. Progress in Photovoltaics: Research and Applications, 2013, 21, 456-461.	8.1	12
74	Negatively charged silicon nitride films for improved p-type silicon surface passivation by low-temperature rapid thermal annealing. Journal Physics D: Applied Physics, 2019, 52, 345102.	2.8	12
75	Kinetics Study on Carrier Injectionâ€Induced Degradation and Regeneration at Elevated Temperature in pâ€Type Castâ€Monosilicon Passivated Emitter Rear Contact Solar Cells. Solar Rrl, 2021, 5, 2100035.	5.8	11
76	Enhancing photoelectrochemical hydrogen production of a n ⁺ p-Si hetero-junction photocathode with amorphous Ni and Ti layers. Inorganic Chemistry Frontiers, 2019, 6, 527-532.	6.0	10
77	Effects of n-butyl amine incorporation on the performance of perovskite light emitting diodes. Nanotechnology, 2019, 30, 105703.	2.6	10
78	Defect engineering in cast monoâ€like silicon: A review. Progress in Photovoltaics: Research and Applications, 2021, 29, 294-314.	8.1	10
79	Solution-processed molybdenum oxide films by low-temperature annealing for improved silicon surface passivation. Materials Science in Semiconductor Processing, 2021, 132, 105920.	4.0	10
80	Revealing the Correlation of Light Soaking Effect with Ion Migration in Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	9
81	Determination of the Boron and Phosphorus Ionization Energies in Compensated Silicon by Temperature-Dependent Luminescence. Silicon, 2017, 9, 147-151.	3.3	8
82	Design and Photovoltaic Properties of Graphene/Silicon Solar Cell. Journal of Electronic Materials, 2018, 47, 5025-5032.	2.2	8
83	Electron Radiation Effects on the 4H-SiC PiN Diodes Characteristics: An Insight From Point Defects to Electrical Degradation. IEEE Access, 2019, 7, 170385-170391.	4.2	8
84	Understanding the Influence of Cation and Anion Migration on Mixed omposition Perovskite Solar Cells via Transient Ion Drift. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100225.	2.4	8
85	On the low carrier lifetime edge zone in multicrystalline silicon ingots. Journal of Applied Physics, 2014, 115, .	2.5	7
86	display="inline" overflow="scroll">< mml:mrow> < mml:mi>Si < mml:mi> < mml:mi> < mml:mi> < mml:mo> < / mml:mo> < / mml:msub> < mml:mrow> < mml:mi> mathvariant="normal">O < / mml:mi> < / mml:mrow> < mml:mn> 2 < / mml:mn> < / mml:msub> < / mml:math> Interface Carrier-Tranning Effects on Breakdown-Voltage Degradation in Power Devices. Physical	Si	• < mml:mi
87	Review Applied, 2021, 15, . Investigation of iron impurity gettering at dislocations in a SiGe/Si heterostructure. Journal of Applied Physics, 2009, 105, 073712.	2.5	6
88	Quantitative Study of the Evolution of Oxygen and Vacancy Complexes in Czochralski Silicon. Applied Physics Express, 2012, 5, 021302.	2.4	6
89	Ab-initio calculation study on the formation mechanism of boron-oxygen complexes in c-Si. AIP Advances, 2015, 5, .	1.3	6
90	Characterization of silicon surface states at clean and copper contaminated condition via transient capacitance measurement. Applied Physics Letters, 2017, 111, .	3.3	6

#	Article	IF	CITATIONS
91	Investigation on the impact of hydrogen on the passivation of silicon surface states in clean and copper contaminated conditions. AIP Advances, 2019, 9, 105102.	1.3	6
92	Effects of nitrogen doping on vacancy-oxygen complexes in neutron irradiated Czochralski silicon. Materials Science in Semiconductor Processing, 2019, 98, 65-69.	4.0	6
93	Study of gamma-ray radiation effects on the passivation properties of atomic layer deposited Al2O3 on silicon using deep-level transient spectroscopy. Journal of Materials Science: Materials in Electronics, 2019, 30, 1148-1152.	2.2	6
94	Relating Gain Degradation to Defects Production in Neutron-Irradiated 4H-SiC Transistors. IEEE Transactions on Nuclear Science, 2021, 68, 312-317.	2.0	6
95	The effect and mechanism of current injection to suppress light and elevated temperature induced degradation in p-type cast-mono and multicrystalline silicon Passivated Emitter and Rear cells. Solar Energy, 2022, 235, 12-18.	6.1	6
96	Crystal growth and resistivity modulation of n-type phosphorus-doped cast mono-like silicon. Solar Energy, 2022, 236, 294-300.	6.1	6
97	Multifunctional Thiophene-Based Interfacial Passivating Layer for High-Performance Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 6823-6832.	5.1	6
98	Performance of Silicon Nanowire Solar Cells with Phosphorus-Diffused Emitters. Journal of Nanomaterials, 2012, 2012, 1-6.	2.7	5
99	A deep-level transient spectroscopy study of gamma-ray irradiation on the passivation properties of silicon nitride layer on silicon. AIP Advances, 2017, 7, .	1.3	5
100	Controllable Nitrogen Doping in Multicrystalline Silicon by Casting Under Low Cost Ambient Nitrogen. Silicon, 2018, 10, 1717-1722.	3.3	5
101	Effect of iron contamination on grain boundary states at a direct silicon bonded (110)/(100) interface. Physica Status Solidi - Rapid Research Letters, 2010, 4, 350-352.	2.4	4
102	Effect of germanium doping on the formation kinetics of vacancy-dioxygen complexes in high dose neutron irradiated crystalline silicon. Journal of Applied Physics, 2017, 122, 095704.	2.5	4
103	Effects of Iron Contamination and Hydrogen Passivation on the Electrical Properties of Oxygen Precipitates in CZ-Si. Journal of Electronic Materials, 2018, 47, 5039-5044.	2.2	4
104	Microdefect Characteristics in Castâ€Mono Silicon Wafers Induced by Slurry Sawing. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000258.	1.8	4
105	Hyperdoped Crystalline Silicon for Infrared Photodetectors by Pulsed Laser Melting: A Review. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	1.8	4
106	Effect of point defects on the recombination activity of copper precipitates in p-type Czochralski silicon. Journal of Materials Science: Materials in Electronics, 2008, 19, 32-35.	2.2	3
107	Photoelectric properties of reduced-graphene-oxide film and its photovoltaic application. RSC Advances, 2015, 5, 39630-39634.	3.6	3
108	Optimized phosphorus diffusion process and performance improvement of c-Si solar cell by eliminating SiP precipitates in the emitter. Journal of Materials Science: Materials in Electronics, 2019, 30, 13820-13825.	2.2	3

#	Article	IF	CITATIONS
109	Revisiting the effects of carbon-doping at 1017Âcmâ^'3 level on dislocation behavior of Czochralski silicon: from room temperature to elevated temperatures. Journal of Materials Science: Materials in Electronics, 2019, 30, 3114-3123.	2.2	3
110	Effects of vacancy defects on the mechanical properties in neutron irradiated Czochralski silicon. Journal of Physics Condensed Matter, 2020, 32, 275702.	1.8	3
111	Performance Improvement of Galliumâ€Doped Passivated Emitter and Rear Cells by Twoâ€Step Bias Application. Solar Rrl, 0, , 2100738.	5.8	3
112	A New Design of Side Heater for 3D Solid-liquid Interface Improvement in G8 Directional Solidification Silicon Ingot Growth. Silicon, 2022, 14, 9407-9416.	3.3	3
113	Understanding the effect of impurities and grain boundaries on mechanical behavior of Si via nanoindentation of (110)/(100) direct Si bonded wafers. Journal of Materials Research, 2012, 27, 349-355.	2.6	2
114	Hydrogenation of interface states at a clean grain boundary in the direct silicon bonded wafer. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 990-993.	1.8	2
115	Modulation of electrical characteristics at a Ni-contaminated silicon grain boundary by engineering the metal precipitates. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1828-1831.	1.8	2
116	Innentitelbild: Hierarchical NiCo ₂ O ₄ Hollow Microcuboids as Bifunctional Electrocatalysts for Overall Water‧plitting (Angew. Chem. 21/2016). Angewandte Chemie, 2016, 128, 6216-6216.	2.0	2
117	Effect of Germanium Doping on the Production and Evolution of Divacancy Complexes in Neutron Irradiated Czochralski Silicon. Journal of Electronic Materials, 2018, 47, 5019-5024.	2.2	2
118	Impact of Carbon Codoping on Generation and Dissociation of Boron–Oxygen Defects in Czochralski Silicon. Journal of Electronic Materials, 2018, 47, 5092-5098.	2.2	2
119	Carrier injection and annealing enhanced electrical performance in tunnel oxide passivated contact silicon solar cells. Physica Status Solidi (A) Applications and Materials Science, 0, , 2100614.	1.8	2
120	Activation and Deactivation of Silicon Surface Passivation by Niobium Oxide Films. Physica Status Solidi - Rapid Research Letters, 2022, 16, .	2.4	2
121	Graphene Quantum Dots: Highly Pure and Luminescent Graphene Quantum Dots on Silicon Directly Grown by Chemical Vapor Deposition (Part. Part. Syst. Charact. 1/2016). Particle and Particle Systems Characterization, 2016, 33, 2-2.	2.3	1
122	Carbon effect on the survival of vacancies in Czochralski silicon during rapid thermal anneal. Journal of Applied Physics, 2017, 122, 045705.	2.5	1
123	Effect of Smallâ€Angle Grain Boundary on the Mechanical Properties in Direct Silicon Bonded Wafer. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800118.	1.8	1
124	A microscopic TEM study of the defect layers in cast-mono crystalline silicon wafers induced by diamond-wire sawing. AIP Advances, 2021, 11, 045103.	1.3	1
125	Ultrathin Aluminum Oxide Films Induced by Rapid Thermal Annealing for Effective Silicon Surface Passivation. Physica Status Solidi - Rapid Research Letters, 0, , 2100267.	2.4	1
126	Light soaking-induced performance enhancement in a-Si:H/c-Si heterojunction solar cells. Science China Materials, 0, , .	6.3	1

#	Article	IF	CITATIONS
127	On the mechanism of carrier scattering at oxide precipitates in Czochralski silicon. Journal of Materials Science: Materials in Electronics, 2015, 26, 2589-2594.	2.2	0
128	Rapid thermal processing induced vacancy-oxygen complexes in Czochralski-grown Si1â^'xGex. Journal of Materials Science: Materials in Electronics, 2015, 26, 7666-7672.	2.2	0