
Guillermo L Virkel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2564314/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding triclabendazole resistance. Experimental and Molecular Pathology, 2007, 82, 104-109.	2.1	195
2	Effects of sub-lethal exposure of rats to the herbicide glyphosate in drinking water: Glutathione transferase enzyme activities, levels of reduced glutathione and lipid peroxidation in liver, kidneys and small intestine. Environmental Toxicology and Pharmacology, 2012, 34, 811-818.	4.0	82
3	Strategies to Optimize the Efficacy of Anthelmintic Drugs in Ruminants. Trends in Parasitology, 2018, 34, 664-682.	3.3	82
4	COMPARATIVE HEPATIC AND EXTRAHEPATIC ENANTIOSELECTIVE SULFOXIDATION OF ALBENDAZOLE AND FENBENDAZOLE IN SHEEP AND CATTLE. Drug Metabolism and Disposition, 2004, 32, 536-544.	3.3	74
5	Assessment of the main metabolism pathways for the flukicidal compound triclabendazole in sheep. Journal of Veterinary Pharmacology and Therapeutics, 2006, 29, 213-223.	1.3	52
6	Triclabendazole biotransformation and comparative diffusion of the parent drug and its oxidized metabolites intoFasciola hepatica. Xenobiotica, 2004, 34, 1043-1057.	1.1	50
7	Hepatic and extra-hepatic metabolic pathways involved in flubendazole biotransformation in sheep. Biochemical Pharmacology, 2008, 76, 773-783.	4.4	43
8	Enantiomeric behaviour of albendazole and fenbendazole sulfoxides in domestic animals: Pharmacological implications. Veterinary Journal, 2009, 181, 241-250.	1.7	41
9	Evaluation of the interaction between ivermectin and albendazole following their combined use in lambs. Journal of Veterinary Pharmacology and Therapeutics, 2008, 31, 230-239.	1.3	37
10	Integrated pharmacological assessment of flubendazole potential for use in sheep: disposition kinetics, liver metabolism and parasite diffusion ability ¹ . Journal of Veterinary Pharmacology and Therapeutics, 2004, 27, 299-308.	1.3	35
11	The herbicide glyphosate is a weak inhibitor of acetylcholinesterase in rats. Environmental Toxicology and Pharmacology, 2016, 45, 41-44.	4.0	33
12	In vitro ruminal biotransformation of benzimidazole sulphoxide anthelmintics: enantioselective sulphoreduction in sheep and cattle. Journal of Veterinary Pharmacology and Therapeutics, 2002, 25, 15-23.	1.3	31
13	Effects of Sublethal Exposure to a Glyphosate-Based Herbicide Formulation on Metabolic Activities of Different Xenobiotic-Metabolizing Enzymes in Rats. International Journal of Toxicology, 2014, 33, 307-318.	1.2	28
14	Role of ABC Transporters in Veterinary Medicine: Pharmaco- Toxicological Implications. Current Medicinal Chemistry, 2019, 26, 1251-1269.	2.4	27
15	Albendazole sulphoxide enantiomeric ratios in plasma and target tissues after intravenous administration of ricobendazole to cattle. Journal of Veterinary Pharmacology and Therapeutics, 2001, 24, 117-124.	1.3	26
16	Combined use of ivermectin and triclabendazole in sheep: In vitro and in vivo characterisation of their pharmacological interaction. Veterinary Journal, 2009, 182, 261-268.	1.7	26
17	Moxidectin and ivermectin metabolic stability in sheep ruminal and abomasal contents. Journal of Veterinary Pharmacology and Therapeutics, 2005, 28, 411-418.	1.3	24
18	A pharmacology-based comparison of the activity of albendazole and flubendazole against Echinococcus granulosus metacestode in sheep. Acta Tropica, 2013, 127, 216-225.	2.0	24

Guillermo L Virkel

#	Article	IF	CITATIONS
19	Expression differential of microsomal and cytosolic glutathione-S-transferases in Fasciola hepatica resistant at triclabendazole. Molecular and Biochemical Parasitology, 2012, 181, 37-39.	1.1	22
20	Inhibition of cytochrome P450 activity enhances the systemic availability of triclabendazole metabolites in sheep. Journal of Veterinary Pharmacology and Therapeutics, 2009, 32, 79-86.	1.3	21
21	Comparative pharmacokinetic and pharmacodynamic response of single and double intraruminal doses of ivermectin and moxidectin in nematode-infected lambs. New Zealand Veterinary Journal, 2015, 63, 227-234.	0.9	17
22	Albendazole enantiomeric metabolism and binding to cytosolic proteins in the liver fluke Fasciola hepatica. Veterinary Research Communications, 2009, 33, 163-173.	1.6	16
23	Combination of bioactive phytochemicals and synthetic anthelmintics: In vivo and in vitro assessment of the albendazole-thymol association. Veterinary Parasitology, 2020, 281, 109121.	1.8	14
24	Combination of cypermethrin and thymol for control of Rhipicephalus microplus: Efficacy evaluation and description of an action mechanism. Ticks and Tick-borne Diseases, 2022, 13, 101874.	2.7	14
25	Influence of diet on the pattern of gastrointestinal biotransformation of netobimin and albendazole sulphoxide in sheep. European Journal of Drug Metabolism and Pharmacokinetics, 1999, 24, 31-37.	1.6	12
26	Characterization of xenobiotic metabolizing enzymes in bovine small intestinal mucosa. Journal of Veterinary Pharmacology and Therapeutics, 2010, 33, 295-303.	1.3	12
27	<i>In vitro</i> inhibition of the hepatic S-oxygenation of the anthelmintic albendazole by the natural monoterpene thymol in sheep. Xenobiotica, 2020, 50, 408-414.	1.1	12
28	Enantioselective liver microsomal sulphoxidation of albendazole in cattle: effect of nutritional status. Xenobiotica, 2000, 30, 381-393.	1.1	11
29	Effect of the ionophore antibiotic monensin on the ruminal biotransformation of benzimidazole anthelmintics. Veterinary Journal, 2004, 167, 265-271.	1.7	9
30	Species differences in hepatic biotransformation of the anthelmintic drug flubendazole. Journal of Veterinary Pharmacology and Therapeutics, 2017, 40, 493-499.	1.3	8
31	Effect of amphiphilic surfactant agents on the gastrointestinal absorption of albendazole in cattle. Biopharmaceutics and Drug Disposition, 2003, 24, 95-103.	1.9	7
32	Phase 1 and phase 2 metabolic activities along the small intestine in adult male sheep1. Journal of Veterinary Pharmacology and Therapeutics, 2010, 33, 537-545.	1.3	7
33	Hepatic biotransformation pathways and ruminal metabolic stability of the novel anthelmintic monepantel in sheep and cattle. Journal of Veterinary Pharmacology and Therapeutics, 2016, 39, 488-496.	1.3	7
34	Oxfendazole kinetics in pigs: In vivo assessment of its pattern of accumulation in Ascaris suum. Experimental Parasitology, 2019, 199, 52-58.	1.2	7
35	Enantioselective liver microsomal sulphoxidation of albendazole in cattle: effect of nutritional status. Xenobiotica, 2000, 30, 381-393.	1.1	7
36	Pharmacokinetic assessment of the monepantel plus oxfendazole combined administration in dairy cows. Journal of Veterinary Pharmacology and Therapeutics, 2018, 41, 292-300.	1.3	6

#	Article	IF	CITATIONS
37	Effects of fenbendazole and triclabendazole on the expression of cytochrome P450 1A and flavin-monooxygenase isozymes in bovine precision-cut liver slices. Veterinary Journal, 2019, 245, 61-69.	1.7	6
38	In vitro and in vivo assessment of the benzydamine-mediated interference with the hepatic S-oxidation of the anthelmintic albendazole in sheep. Small Ruminant Research, 2014, 120, 142-149.	1.2	5
39	Assessment of liver slices for research on metabolic drug–drug interactions in cattle. Xenobiotica, 2017, 47, 933-942.	1.1	4
40	In vitro and in vivo effects of chlorpyrifos and cypermethrin on blood cholinesterases in sheep. Journal of Veterinary Pharmacology and Therapeutics, 2019, 42, 548-555.	1.3	2
41	Metabolic stability of glyphosate and its environmental metabolite (aminomethylphosphonic acid) in the ruminal content of cattle. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2022, , 1-12.	2.3	1