
Francois Meurens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2563819/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Signal Peptide and Chaperone UNC93B1 Both Influence TLR8 Ectodomain Intracellular Endosomal Localization. Vaccines, 2022, 10, 14.	2.1	0
2	The African swine fever virus protease pS273R inhibits DNA sensing cGAS-STING pathway by targeting IKKε. Virulence, 2022, 13, 740-756.	1.8	22
3	The Porcine and Chicken Innate DNA Sensing cGAS-STING-IRF Signaling Axes Exhibit Differential Species Specificity. Journal of Immunology, 2022, 209, 412-426.	0.4	9
4	SARS-CoV-2 Vaccination: What Can We Expect Now?. Vaccines, 2022, 10, 1093.	2.1	0
5	Appeasing Pheromones against Bovine Respiratory Complex and Modulation of Immune Transcript Expressions. Animals, 2021, 11, 1545.	1.0	2
6	Analysis of Porcine RIG-I Like Receptors Revealed the Positive Regulation of RIG-I and MDA5 by LGP2. Frontiers in Immunology, 2021, 12, 609543.	2.2	7
7	Animal board invited review: Risks of zoonotic disease emergence at the interface of wildlife and livestock systems. Animal, 2021, 15, 100241.	1.3	23
8	Research in non-rodent vertebrates enlightens the immunological landscape. Molecular Immunology, 2021, 134, 100-101.	1.0	0
9	Porcine RIG-I and MDA5 Signaling CARD Domains Exert Similar Antiviral Function Against Different Viruses. Frontiers in Microbiology, 2021, 12, 677634.	1.5	4
10	The pig as a medical model for acquired respiratory diseases and dysfunctions: An immunological perspective. Molecular Immunology, 2021, 135, 254-267.	1.0	18
11	Identification of imidazoquinoline derivative (IQD) interacting sites of porcine TLR8 and the underlying species specificity. Molecular Immunology, 2021, 136, 45-54.	1.0	2
12	The Innate Immune DNA Sensing cGAS-STING Signaling Pathway Mediates Anti-PRRSV Function. Viruses, 2021, 13, 1829.	1.5	14
13	Screening of Porcine Innate Immune Adaptor Signaling Revealed Several Anti-PRRSV Signaling Pathways. Vaccines, 2021, 9, 1176.	2.1	5
14	African Swine Fever Virus A528R Inhibits TLR8 Mediated NF-κB Activity by Targeting p65 Activation and Nuclear Translocation. Viruses, 2021, 13, 2046.	1.5	15
15	African Swine Fever Virus Structural Protein p17 Inhibits Cell Proliferation through ER Stress—ROS Mediated Cell Cycle Arrest. Viruses, 2021, 13, 21.	1.5	27
16	How the Innate Immune DNA Sensing cGAS–STING Pathway Is Involved in Autophagy. International Journal of Molecular Sciences, 2021, 22, 13232.	1.8	15
17	IPEC-1 variable immune response to different serovars of Salmonella enterica subsp. enterica. Veterinary Immunology and Immunopathology, 2020, 220, 109989.	0.5	0
18	The signaling relations between three adaptors of porcine C-type lectin receptor pathway. Developmental and Comparative Immunology, 2020, 104, 103555.	1.0	5

#	Article	IF	CITATIONS
19	Chicken DNA Sensing cGAS-STING Signal Pathway Mediates Broad Spectrum Antiviral Functions. Vaccines, 2020, 8, 369.	2.1	23
20	Prospecting potential links between PRRSV infection susceptibility of alveolar macrophages and other respiratory infectious agents present in conventionally reared pigs. Veterinary Immunology and Immunopathology, 2020, 229, 110114.	0.5	4
21	Porcine Reproductive and Respiratory Syndrome Virus Interferes with Swine Influenza A Virus Infection of Epithelial Cells. Vaccines, 2020, 8, 508.	2.1	11
22	Porcine IFI16 Negatively Regulates cGAS Signaling Through the Restriction of DNA Binding and Stimulation. Frontiers in Immunology, 2020, 11, 1669.	2.2	12
23	Flu RNA Vaccine: A Game Changer?. Vaccines, 2020, 8, 760.	2.1	2
24	Effectiveness of two intranasal vaccines for the control of bovine respiratory disease in newborn beef calves: A randomized non-inferiority multicentre field trial. Veterinary Journal, 2020, 263, 105532.	0.6	4
25	Coinfections and their molecular consequences in the porcine respiratory tract. Veterinary Research, 2020, 51, 80.	1.1	119
26	Inter-relation analysis of signaling adaptors of porcine innate immune pathways. Molecular Immunology, 2020, 121, 20-27.	1.0	7
27	Opinion paper: Severe Acute Respiratory Syndrome Coronavirus 2 and domestic animals: what relation?. Animal, 2020, 14, 2221-2224.	1.3	3
28	Porcine Respiratory Cell and Tissue Coinfections and Superinfections with Porcine Reproductive and Respiratory Syndrome and Swine Influenza Viruses. Proceedings (mdpi), 2020, 50, .	0.2	0
29	Synthetic Cationic Peptide IDR-1002 and Human Cathelicidin LL37 Modulate the Cell Innate Response but Differentially Impact PRRSV Replication in vitro. Frontiers in Veterinary Science, 2019, 6, 233.	0.9	8
30	Comparative transcriptome analysis of TLR8 signaling cells revealed the porcine TLR8 specific differentially expressed genes. Developmental and Comparative Immunology, 2019, 98, 129-136.	1.0	12
31	Assessment of pulmonary tissue responses in pigs challenged with PRRSV Lena strain shows better protection after immunization with field than vaccine strains. Veterinary Microbiology, 2019, 230, 249-259.	0.8	2
32	Contribution of the swine model in the study of human sexually transmitted infections. Infection, Genetics and Evolution, 2018, 66, 346-360.	1.0	22
33	First demonstration of the circulation of a pneumovirus in French pigs by detection of anti-swine orthopneumovirus nucleoprotein antibodies. Veterinary Research, 2018, 49, 118.	1.1	5
34	High dosage of zinc modulates T-cells in a time-dependent manner within porcine gut-associated lymphatic tissue. British Journal of Nutrition, 2018, 120, 1349-1358.	1.2	8
35	Immunome differences between porcine ileal and jejunal Peyer's patches revealed by global transcriptome sequencing of gut-associated lymphoid tissues. Scientific Reports, 2018, 8, 9077.	1.6	12
36	Linoorbitides and enterolactone mitigate inflammation-induced oxidative stress and loss of intestinal epithelial barrier integrity. International Immunopharmacology, 2018, 64, 42-51.	1.7	26

#	Article	IF	CITATIONS
37	Chlamydia suis and Chlamydia trachomatis induce multifunctional CD4 T cells in pigs. Vaccine, 2017, 35, 91-100.	1.7	36
38	Interleukins and large domestic animals, a bibliometric analysis. Heliyon, 2017, 3, e00321.	1.4	4
39	Dual infections of CD163 expressing NPTr epithelial cells with influenza A virus and PRRSV. Veterinary Microbiology, 2017, 207, 143-148.	0.8	11
40	The Pig: A Relevant Model for Evaluating the Neutrophil Serine Protease Activities during Acute Pseudomonas aeruginosa Lung Infection. PLoS ONE, 2016, 11, e0168577.	1.1	15
41	Flow cytometry as an improved method for the titration of <i>Chlamydiaceae</i> and other intracellular bacteria. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2016, 89, 451-460.	1.1	19
42	Extended semen for artificial insemination in swine as a potential transmission mechanism for infectious Chlamydia suis. Theriogenology, 2016, 86, 949-956.	0.9	9
43	Mycoplasma hyopneumoniae does not affect the interferon-related anti-viral response but predisposes the pig to a higher level of inflammation following swine influenza virus infection. Journal of General Virology, 2016, 97, 2501-2515.	1.3	15
44	Large Animal Models for Vaccine Development and Testing. ILAR Journal, 2015, 56, 53-62.	1.8	94
45	Pattern recognition receptors in the gut: analysis of their expression along the intestinal tract and the crypt/villus axis. Physiological Reports, 2015, 3, e12225.	0.7	45
46	Special issue on non-rodent animal models for immunology research: What can we learn from large animals?. Molecular Immunology, 2015, 66, 1-2.	1.0	3
47	The immunology of the porcine skin and its value as a model for human skin. Molecular Immunology, 2015, 66, 14-21.	1.0	348
48	Porcine retinal cell line VIDO R1 and Chlamydia suis to modelize ocular chlamydiosis. Veterinary Immunology and Immunopathology, 2015, 166, 95-107.	0.5	9
49	CCL28 involvement in mucosal tissues protection as a chemokine and as an antibacterial peptide. Developmental and Comparative Immunology, 2014, 44, 286-290.	1.0	26
50	Preliminary studies for the establishment of a model of CFTR-deficient piglets. Revue Des Maladies Respiratoires, 2014, 31, 672.	1.7	0
51	The porcine innate immune system: An update. Developmental and Comparative Immunology, 2014, 45, 321-343.	1.0	235
52	Innate immune response to a H3N2 subtype swine influenza virus in newborn porcine trachea cells, alveolar macrophages, and precision-cut lung slices. Veterinary Research, 2014, 45, 42.	1.1	50
53	Newborn pig trachea cell line cultured in air-liquid interface conditions allows a partial in vitro representation of the porcine upper airway tissue. BMC Cell Biology, 2014, 15, 14.	3.0	15
54	In vitro and ex vivo analyses of co-infections with swine influenza and porcine reproductive and respiratory syndrome viruses. Veterinary Microbiology, 2014, 169, 18-32.	0.8	62

#	Article	IF	CITATIONS
55	Development of gut immunoglobulin A production in piglet in response to innate and environmental factors. Developmental and Comparative Immunology, 2014, 44, 235-244.	1.0	35
56	Grouping Pig-Specific Responses to Mitogen with Similar Responder Animals may Facilitate the Interpretation of Results Obtained in an Out-Bred Animal Model. Journal of Vaccines & Vaccination, 2014, 05, .	0.3	2
5 7	Effects of dietary yeast strains on immunoglobulin in colostrum and milk of sows. Veterinary Immunology and Immunopathology, 2013, 152, 20-27.	0.5	43
58	SOCS proteins in infectious diseases of mammals. Veterinary Immunology and Immunopathology, 2013, 151, 1-19.	0.5	46
59	Deoxynivalenol as a New Factor in the Persistence of Intestinal Inflammatory Diseases: An Emerging Hypothesis through Possible Modulation of Th17-Mediated Response. PLoS ONE, 2013, 8, e53647.	1.1	91
60	The pig as a model for investigating the role of neutrophil serine proteases in human inflammatory lung diseases. Biochemical Journal, 2012, 447, 363-370.	1.7	26
61	The pig: a model for human infectious diseases. Trends in Microbiology, 2012, 20, 50-57.	3.5	803
62	Porcine colon explants in the study of innate immune response to Entamoeba histolytica. Veterinary Immunology and Immunopathology, 2012, 145, 611-617.	0.5	12
63	Effect of Saccharomyces cerevisiae var. Boulardii and beta-galactomannan oligosaccharide on porcine intestinal epithelial and dendritic cells challenged in vitro with Escherichia coli F4 (K88). Veterinary Research, 2012, 43, 4.	1.1	47
64	Stability of expression of reference genes in porcine peripheral blood mononuclear and dendritic cells. Veterinary Immunology and Immunopathology, 2011, 141, 11-15.	0.5	29
65	Saccharomyces cerevisiae decreases inflammatory responses induced by F4+ enterotoxigenic Escherichia coli in porcine intestinal epithelial cells. Veterinary Immunology and Immunopathology, 2011, 141, 133-138.	0.5	50
66	Expression of SOCS1-7 and CIS mRNA in porcine tissues. Veterinary Immunology and Immunopathology, 2011, 144, 493-498.	0.5	42
67	Technical note: Validation of candidate reference genes for normalization of quantitative PCR in bovine mammary epithelial cells responding to inflammatory stimuli. Journal of Dairy Science, 2011, 94, 2425-2430.	1.4	54
68	In vitro-generated interspecific recombinants between bovine herpesviruses 1 and 5 show attenuated replication characteristics and establish latency in the natural host. BMC Veterinary Research, 2011, 7, 19.	0.7	7
69	Saccharomyces cerevisiae Modulates Immune Gene Expressions and Inhibits ETEC-Mediated ERK1/2 and p38 Signaling Pathways in Intestinal Epithelial Cells. PLoS ONE, 2011, 6, e18573.	1.1	110
70	Towards the Establishment of a Porcine Model to Study Human Amebiasis. PLoS ONE, 2011, 6, e28795.	1.1	12
71	Differences in transcriptomic profile and IgA repertoire between jejunal and ileal Peyer's patches. Developmental and Comparative Immunology, 2010, 34, 102-106.	1.0	15
72	Epithelial induction of porcine suppressor of cytokine signaling 2 (SOCS2) gene expression in response to Entamoeba histolytica. Developmental and Comparative Immunology, 2010, 34, 562-571.	1.0	39

#	Article	IF	CITATIONS
73	Ultra-early weaning in piglets results in low serum IgA concentration and IL17 mRNA expression. Veterinary Immunology and Immunopathology, 2010, 137, 261-268.	0.5	34
74	Coinfection with Two Closely Related Alphaherpesviruses Results in a Highly Diversified Recombination Mosaic Displaying Negative Genetic Interference. Journal of Virology, 2009, 83, 3127-3137.	1.5	25
75	Characterization of interspecific recombinants generated from closely related bovine herpesviruses 1 and 5 through multiple PCR sequencing assays. Journal of Virological Methods, 2009, 161, 75-83.	1.0	11
76	Identification in milk of a serum amyloid A peptide chemoattractant for B lymphoblasts. BMC Immunology, 2009, 10, 4.	0.9	16
77	Humoral and cellular factors of maternal immunity in swine. Developmental and Comparative Immunology, 2009, 33, 384-393.	1.0	202
78	Induction of Porcine Regulatory Cells by Mycophenolic Acid-Treated Dendritic Cells. Transplantation Proceedings, 2009, 41, 700-702.	0.3	7
79	Broad early immune response of porcine epithelial jejunal IPI-2I cells to Entamoeba histolytica. Molecular Immunology, 2009, 46, 927-936.	1.0	42
80	CD40 engagement strongly induces CD25 expression on porcine dendritic cells and polarizes the T cell immune response toward Th1. Molecular Immunology, 2009, 46, 437-447.	1.0	33
81	Early immune response following <i>Salmonella enterica</i> subspecies <i>enterica</i> serovar Typhimurium infection in porcine jejunal gut loops. Veterinary Research, 2009, 40, 05.	1.1	121
82	Saccharomyces boulardii effects on gastrointestinal diseases. Current Issues in Molecular Biology, 2009, 11, 47-58.	1.0	61
83	Molecular cloning and functional characterization of porcine CCL28: Possible involvement in homing of IgA antibody secreting cells into the mammary gland. Molecular Immunology, 2008, 45, 271-277.	1.0	27
84	New insights into the dual recruitment of IgA+ B cells in the developing mammary gland. Molecular Immunology, 2008, 45, 3354-3362.	1.0	48
85	Evaluation of two interspecific recombinant viruses generated from two neurotropic bovine alphaherpesviruses: genomic characterization and virulence properties in the natural host. BMC Proceedings, 2008, 2, .	1.8	0
86	Clinical protection against caprine herpesvirus 1 genital infection by intranasal administration of a live attenuated glycoprotein E negative bovine herpesvirus 1 vaccine. BMC Veterinary Research, 2007, 3, 33.	0.7	7
87	Expression of mucosal chemokines TECK/CCL25 and MEC/CCL28 during fetal development of the ovine mucosal immune system. Immunology, 2007, 120, 544-555.	2.0	22
88	Differential expression of adhesion molecules and chemokines between nasal and small intestinal mucosae: implications for T―and sIgA ⁺ Bâ€lymphocyte recruitment. Immunology, 2007, 122, 551-561.	2.0	24
89	Commensal Bacteria and Expression of Two Major Intestinal Chemokines, TECK/CCL25 and MEC/CCL28, and Their Receptors. PLoS ONE, 2007, 2, e677.	1.1	60
90	Intraspecific bovine herpesvirus 1 recombinants carrying glycoprotein E deletion as a vaccine marker are virulent in cattle. Journal of General Virology, 2006, 87, 2149-2154.	1.3	26

#	Article	IF	CITATIONS
91	Expression of TECK/CCL25 and MEC/CCL28 chemokines and their respective receptors CCR9 and CCR10 in porcine mucosal tissues. Veterinary Immunology and Immunopathology, 2006, 113, 313-327.	0.5	40
92	Recombination in the alphaherpesvirus bovine herpesvirus 1. Veterinary Microbiology, 2006, 113, 171-177.	0.8	38
93	Biological characterization of bovine herpesvirus 1 recombinants possessing the vaccine glycoprotein E negative phenotype. Veterinary Microbiology, 2006, 113, 283-291.	0.8	16
94	Ruminant alphaherpesviruses related to bovine herpesvirus 1. Veterinary Research, 2006, 37, 169-190.	1.1	98
95	Recombination in alphaherpesviruses. Reviews in Medical Virology, 2005, 15, 89-103.	3.9	110
96	Interspecific Recombination between Two Ruminant Alphaherpesviruses, Bovine Herpesviruses 1 and 5. Journal of Virology, 2004, 78, 9828-9836.	1.5	47
97	Superinfection Prevents Recombination of the Alphaherpesvirus Bovine Herpesvirus 1. Journal of Virology, 2004, 78, 3872-3879.	1.5	42
98	The structures of bovine herpesvirus 1 virion and concatemeric DNA: implications for cleavage and packaging of herpesvirus genomes. Virology, 2003, 314, 326-335.	1.1	16
99	Rise and Survival of Bovine Herpesvirus 1 Recombinants after Primary Infection and Reactivation from Latency. Journal of Virology, 2003, 77, 12535-12542.	1.5	45
100	Biosafety of Herpesvirus Vectors. Current Gene Therapy, 2003, 3, 597-611.	0.9	11
101	The Internal Conduit System of the Swine Inverted Lymph Node. Frontiers in Immunology, 0, 13, .	2.2	2
102	African Swine Fever Virus Structural Protein p17 Inhibits cGAS-STING Signaling Pathway Through Interacting With STING. Frontiers in Immunology, 0, 13, .	2.2	15