
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2563669/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal properties of knitted fabrics made from cotton and regenerated bamboo cellulosic fibres. International Journal of Thermal Sciences, 2010, 49, 2042-2048.	2.6	202
2	COVID-19 debunks the myth of socially sustainable supply chain: A case of the clothing industry in South Asian countries. Sustainable Production and Consumption, 2020, 24, 150-155.	5.7	173
3	Social sustainability tensions in multi-tier supply chain: A systematic literature review towards conceptual framework development. Journal of Cleaner Production, 2021, 279, 123075.	4.6	160
4	An analysis of deformation and energy absorption modes of shear thickening fluid treated Kevlar fabrics as soft body armour materials. Materials & Design, 2013, 51, 148-153.	5.1	148
5	Analyzing the barriers of green textile supply chain management in Southeast Asia using interpretive structural modeling. Sustainable Production and Consumption, 2019, 17, 176-187.	5.7	147
6	Development of soft composite materials with improved impact resistance using Kevlar fabric and nano-silica based shear thickening fluid. Materials & Design, 2014, 54, 295-300.	5.1	146
7	Improving the impact resistance performance of Kevlar fabrics using silica based shear thickening fluid. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 529, 224-229.	2.6	139
8	Interactive effects of p-aramid fabric structure and shear thickening fluid on impact resistance performance of soft armor materials. Materials and Design, 2016, 89, 286-293.	3.3	100
9	Managing the barriers of Industry 4.0 adoption and implementation in textile and clothing industry: Interpretive structural model and triple helix framework. Computers in Industry, 2021, 125, 103372.	5.7	99
10	Optimal designing of soft body armour materials using shear thickening fluid. Materials & Design, 2013, 46, 191-198.	5.1	90
11	Structure induced effectiveness of shear thickening fluid for modulating impact resistance of UHMWPE fabrics. Composite Structures, 2019, 210, 41-48.	3.1	89
12	Deconstructing the role of shear thickening fluid in enhancing the impact resistance of high-performance fabrics. Composites Part B: Engineering, 2019, 175, 107167.	5.9	86
13	Design strategy for optimising weight and ballistic performance of soft body armour reinforced with shear thickening fluid. Composites Part B: Engineering, 2020, 183, 107721.	5.9	77
14	Tuning the structure of 3D woven aramid fabrics reinforced with shear thickening fluid for developing soft body armour. Composite Structures, 2017, 178, 415-425.	3.1	75
15	Circular fashion: Properties of fabrics made from mechanically recycled poly-ethylene terephthalate (PET) bottles. Resources, Conservation and Recycling, 2020, 161, 104915.	5.3	75
16	A review of fibrous materials for soft body armour applications. RSC Advances, 2020, 10, 1066-1086.	1.7	70
17	Shear thickening fluids using silica-halloysite nanotubes to improve the impact resistance of p-aramid fabrics. Applied Clay Science, 2016, 132-133, 468-474.	2.6	62
18	Modeling the barriers of green supply chain management in small and medium enterprises. Management of Environmental Quality, 2018, 29, 1110-1122.	2.2	55

#	Article	IF	CITATIONS
19	Tailoring the mechanical and thermal properties of polylactic acid-based bionanocomposite films using halloysite nanotubes and polyethylene glycol by solvent casting process. Journal of Materials Science, 2019, 54, 8971-8983.	1.7	54
20	Is artificial intelligence an enabler of supply chain resiliency post COVID-19? An exploratory state-of-the-art review for future research. Operations Management Research, 2022, 15, 378-398.	5.0	51
21	Soft armour design by angular stacking of shear thickening fluid impregnated high-performance fabrics for quasi-isotropic ballistic response. Composite Structures, 2020, 233, 111720.	3.1	46
22	Multi layered natural rubber coated woven <i>P</i> â€∎ramid and UHMWPE fabric composites for soft body armor application. Polymer Composites, 2018, 39, 3636-3644.	2.3	45
23	Prioritising risk mitigation strategies for environmentally sustainable clothing supply chains: Insights from selected organisational theories. Sustainable Production and Consumption, 2021, 28, 543-555.	5.7	45
24	Attaining sustainable development goals (SDGs) through supply chain practices and business strategies: A systematic review with bibliometric and network analyses. Business Strategy and the Environment, 2022, 31, 3669-3687.	8.5	43
25	Analysing the vulnerability of green clothing supply chains in South and Southeast Asia using fuzzy analytic hierarchy process. International Journal of Production Research, 2021, 59, 752-771.	4.9	41
26	Development and performance optimization of knitted antibacterial materials using polyester–silver nanocomposite fibres. Materials Science and Engineering C, 2015, 54, 26-31.	3.8	40
27	Tailoring the biodegradability of polylactic acid (PLA) based films and ramie- PLA green composites by using selective additives. International Journal of Biological Macromolecules, 2021, 181, 1092-1103.	3.6	39
28	Influence of cellulose nanofibers on the rheological behavior of silica-based shear-thickening fluid. Cellulose, 2017, 24, 4163-4171.	2.4	38
29	Supply chain viability in the context of COVID-19 pandemic in small and medium-sized enterprises: implications for sustainable development goals. Journal of Enterprise Information Management, 2022, 35, 100-124.	4.4	38
30	Effects of fabric construction and shear thickening fluid on yarn pull-out from high-performance fabrics. Textile Reseach Journal, 2016, 86, 2056-2066.	1.1	36
31	Designing of hybrid soft body armour using high-performance unidirectional and woven fabrics impregnated with shear thickening fluid. Composite Structures, 2020, 253, 112776.	3.1	36
32	Optimal design of flyash filled composite friction materials using combined Analytical Hierarchy Process and Technique for Order Preference by Similarity to Ideal Solutions approach. Materials & Design, 2010, 31, 1937-1944.	5.1	33
33	Improving the impact resistance of p-aramid fabrics by sequential impregnation with shear thickening fluid. Fibers and Polymers, 2016, 17, 199-204.	1.1	33
34	Modulating the properties of polylactic acid for packaging applications using biobased plasticizers and naturally obtained fillers. International Journal of Biological Macromolecules, 2020, 153, 1165-1175.	3.6	33
35	Soft body armour. Textile Progress, 2019, 51, 139-224.	1.3	32
36	Ballistic performance and failure modes of woven and unidirectional fabric based soft armour panels. Composite Structures, 2021, 255, 112941.	3.1	32

#	Article	IF	CITATIONS
37	Hybrid approach for augmenting the impact resistance of p-aramid fabrics: grafting of ZnO nanorods and impregnation of shear thickening fluid. Journal of Materials Science, 2019, 54, 13106-13117.	1.7	29
38	Reviewing the applications of artificial intelligence in sustainable supply chains: Exploring research propositions for future directions. Business Strategy and the Environment, 2022, 31, 2400-2423.	8.5	29
39	Deciphering the structure-induced impact response of ZnO nanorod grafted UHMWPE woven fabrics. Thin-Walled Structures, 2020, 156, 106991.	2.7	28
40	Rheometry of novel shear thickening fluid and its application for improving the impact energy absorption of p-aramid fabric. Thin-Walled Structures, 2020, 155, 106954.	2.7	27
41	Effect of weave, structural parameters and ultraviolet absorbers on <i>in vitro</i> protection factor of bleached cotton woven fabrics. Photodermatology Photoimmunology and Photomedicine, 2012, 28, 58-67.	0.7	25
42	Modelling of ring yarn unevenness by soft computing approach. Fibers and Polymers, 2008, 9, 210-216.	1.1	21
43	Interplay of fabric structure and shear thickening fluid impregnation in moderating the impact response of high-performance woven fabrics. Journal of Composite Materials, 2020, 54, 4387-4395.	1.2	21
44	Soft computing in fibrous materials engineering. Textile Progress, 2011, 43, 1-95.	1.3	20
45	Yarn engineering using hybrid artificial neural network-genetic algorithm model. Fibers and Polymers, 2013, 14, 1220-1226.	1.1	20
46	Soft body armour development by silica particle based shear thickening fluid coated <i>p</i> -aramid fabrics. Journal of the Textile Institute, 2019, 110, 1515-1518.	1.0	20
47	Role of surface chemistry of fibres additives on rheological behavior of ceramic particle based Shear Thickening Fluids. Ceramics International, 2018, 44, 21514-21524.	2.3	19
48	Comparative Study of P-aramid Based Soft and Stiff Composite Panels for Protective Application. Fibers and Polymers, 2019, 20, 406-412.	1.1	19
49	Low stress mechanical properties of fabrics woven from bamboo viscose blended yarns. Fibers and Polymers, 2014, 15, 1985-1991.	1.1	18
50	An Exploratory State-of-the-Art Review of Artificial Intelligence Applications in Circular Economy using Structural Topic Modeling. Operations Management Research, 2022, 15, 609-626.	5.0	18
51	Optimization of woven fabric parameters for ultraviolet radiation protection and comfort using artificial neural network and genetic algorithm. Neural Computing and Applications, 2016, 27, 2567-2576.	3.2	17
52	Graphene Reinforced Multiphase Shear Thickening Fluid for Augmenting Low Velocity Ballistic Resistance. Fibers and Polymers, 2021, 22, 213-221.	1.1	16
53	A triple helix framework for strategy development in circular textile and clothing supply chain: an Indian perspective. Journal of Cleaner Production, 2022, 367, 132954.	4.6	16
54	Engineering of cotton fabrics for maximizing in vitro ultraviolet radiation protection. Photodermatology Photoimmunology and Photomedicine, 2010, 26, 290-296.	0.7	15

#	Article	IF	CITATIONS
55	A new approach to determine the quality value of cotton fibres using multi-criteria decision making and genetic algorithm. Fibers and Polymers, 2014, 15, 2658-2664.	1.1	15
56	Machine learning and soft computing applications in textile and clothing supply chain: Bibliometric and network analyses to delineate future research agenda. Expert Systems With Applications, 2022, 200, 117000.	4.4	15
57	Soft Computing Applications in Fabrics and Clothing: A Comprehensive Review. Research Journal of Textile and Apparel, 2010, 14, 1-17.	0.6	14
58	Prediction of rheology of shear thickening fluids using phenomenological and artificial neural network models. Korea Australia Rheology Journal, 2017, 29, 185-193.	0.7	14
59	Improving the mechanical properties of pâ€aramid fabrics and composites by developing ZnO nanostructures. Polymer Composites, 2018, 39, 3300-3306.	2.3	14
60	Tuning the Frictional Properties of Carbon Fabrics Using Boron Carbide Particles. Fibers and Polymers, 2019, 20, 725-731.	1.1	13
61	Modulating the rheological response of shear thickening fluids by variation in molecular weight of carrier fluid and its correlation with impact resistance of treated p-aramid fabrics. Polymer Testing, 2020, 91, 106830.	2.3	13
62	An exposition of shear thickening fluid treated double and 3D woven fabrics with a new integrity factor for enhanced impact resistance. Composite Structures, 2021, 270, 114086.	3.1	13
63	Evaluating the Preparedness of Indian States against COVIDâ€19 Pandemic Risk: A Fuzzy Multiâ€criteria Decisionâ€Making Approach. Risk Analysis, 2022, 42, 85-96.	1.5	13
64	Circular economy adoption challenges in medical waste management for sustainable development: An empirical study. Sustainable Development, 2022, 30, 958-975.	6.9	13
65	Analysis on Bending Performance of the Electro-Textile Antennas With Bandwidth Enhancement for Wearable Tracking Application. IEEE Access, 2022, 10, 31800-31820.	2.6	11
66	Ultraviolet radiation protection by cotton fabrics: role of porous yarn structure, fabric thickness and pore size. Journal of the Textile Institute, 2016, 107, 1159-1168.	1.0	9
67	Economic sustainability benchmarking of environmental initiatives: a case of wastewater treatment plant. Benchmarking, 2021, 28, 2008-2022.	2.9	9
68	Effects of fabric thickness and inter-yarn pore size on ultraviolet radiation protection by polyester woven fabrics. Fibers and Polymers, 2015, 16, 1163-1168.	1.1	8
69	Mitigating the Blunt Trauma of Soft Armour Panels using Polycarbonate Sheets: A Cost-effective Solution. Applied Composite Materials, 2021, 28, 1089-1109.	1.3	8
70	Selection of resilient suppliers in manufacturing industries post-COVID-19: implications for economic and social sustainability in emerging economies. International Journal of Emerging Markets, 2023, 18, 3657-3675.	1.3	8
71	Multilayered flexible uni-polymer and hybrid composites for ballistic applications. Fibers and Polymers, 2017, 18, 786-794.	1.1	7
72	Leveraging the Antibacterial Properties of Knitted Fabrics by Admixture of Polyester-Silver Nanocomposite Fibres. Fibers and Polymers, 2018, 19, 1403-1410.	1.1	7

#	Article	IF	CITATIONS
73	A new case of rank reversal in analytic hierarchy process due to aggregation of cost and benefit criteria. Operations Research Perspectives, 2021, 8, 100185.	1.2	7
74	Improving the Impact Resistance Performance of STF Treated Kevlar Fabric Structures. Materials Today: Proceedings, 2019, 16, 1538-1541.	0.9	6
75	A New Ranking Method for Interval-Valued Intuitionistic Fuzzy Numbers and Its Application in Multi-Criteria Decision-Making. Mathematics, 2021, 9, 2647.	1.1	6
76	Barriers of social sustainability: an improved interpretive structural model of Indian textile and clothing supply chain. Sustainable Development, 2022, 30, 1616-1633.	6.9	6
77	Modelling and prediction of antibacterial activity of knitted fabrics made from silver nanocomposite fibres using soft computing approaches. Neural Computing and Applications, 2020, 32, 9509-9519.	3.2	5
78	Face masks to fight against COVID-19 pandemics: A comprehensive review of materials, design, technology and product development. Journal of Industrial Textiles, 2022, 51, 3613S-3647S.	1.1	5
79	Predicting the ultraviolet radiation protection by polyester–cotton blended woven fabrics using nonlinear regression and artificial neural network models. Photodermatology Photoimmunology and Photomedicine, 2013, 29, 182-189.	0.7	4
80	Sensory attributes of knitted fabrics intended for next-to-skin clothing. Journal of the Textile Institute, 2023, 114, 757-762.	1.0	4
81	Hybrid Neuro-Genetic Machine Learning Models for the Engineering of Ring-spun Cotton Yarns. Journal of Natural Fibers, 2022, 19, 15164-15175.	1.7	4
82	Tailoring the Rheology of Shear Thickening Fluids by Regulating the Particle Size of Dispersed Phase for Enhancing the Impact Resistance of Aramid Fabrics. Fibers and Polymers, 0, , 1.	1.1	3
83	Modeling and Optimization in Fibrous Materials. Journal of the Institution of Engineers (India): Series E, 2015, 96, 87-88.	0.5	2
84	Optimisation of bending and shear rigidities of woven fabrics using hybrid DOE-NSGA-II approach. Journal of the Textile Institute, 0, , 1-8.	1.0	2