V A Kochemirovsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2563288/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Properties of Selenium Colloidal Solution Obtained via Laser Ablation and a Subsequent Method for Producing Highly Dispersed CulnSe2. Jom, 2021, 73, 646-654.	1.9	2
2	Recognition of fake paintings of the 20th-century Russian avant-garde using the physicochemical analysis of zinc white. Forensic Chemistry, 2021, 26, 100367.	2.8	10
3	Magneto-inductive systems as a method to reduce the environmental risks of the existing systems of incoming quality control of metallurgical raw materials. E3S Web of Conferences, 2021, 311, 09004.	0.5	0
4	Azobenzene/Tetraethyl Ammonium Photochromic Potassium Channel Blockers: Scope and Limitations for Design of Para-Substituted Derivatives with Specific Absorption Band Maxima and Thermal Isomerization Rate. International Journal of Molecular Sciences, 2021, 22, 13171.	4.1	4
5	Investigation of the new possibility of mathematical processing of Raman spectra for dating documents. Science and Justice - Journal of the Forensic Science Society, 2020, 60, 451-465.	2.1	8
6	Copper-based nanocatalysts produced via laser-induced ex situ generation for homo- and cross-coupling reactions. Chemical Engineering Science, 2020, 227, 115940.	3.8	6
7	Glass/Au Composite Membranes with Gold Nanoparticles Synthesized inside Pores for Selective Ion Transport. Materials, 2020, 13, 1767.	2.9	2
8	In situ laser-induced synthesis of gas sensing microcomposites based on molybdenum and its oxides. Composites Part B: Engineering, 2019, 157, 322-330.	12.0	15
9	Laser method of microscopic sensor synthesis for liquid and gas analysis using glucose and H2S as an example. Journal of Solid State Electrochemistry, 2019, 23, 3173-3185.	2.5	3
10	Low-Frequency Magnetic Scanning Device and Algorithm for Determining the Magnetic and Non-Magnetic Fractions of Moving Metallurgical Raw Materials. Applied Sciences (Switzerland), 2019, 9, 2001.	2.5	1
11	Spectroscopic and theoretical studies of potassium sodium l-(+)-tartrate tetrahydrate and l-tartaric acid used as precursors for in situ laser-induced deposition of the catalytically active copper microstructures. Optical and Quantum Electronics, 2019, 51, 1.	3.3	2
12	Laser-induced continuous generation of Ni nanoparticles for organic synthesis. Russian Chemical Bulletin, 2019, 68, 2020-2027.	1.5	2
13	Challenges of Forensic-Technical Expertise of Documents for Determining the Terms of Their Production. Journal of Siberian Federal University - Humanities and Social Sciences, 2019, 12, 410-437.	0.2	6
14	The electronic spectra and the structures of the individual copper(II) chloride and bromide complexes in acetonitrile according to steady-state absorption spectroscopy and DFT/TD-DFT calculations. Chemical Physics, 2018, 503, 14-19.	1.9	17
15	Influence of the ligand nature on the in situ laser-induced synthesis of the electrocatalytically active copper microstructures. Arabian Journal of Chemistry, 2018, 11, 624-634.	4.9	9
16	Ultrafast Excited-State Dynamics of Ligand-Field and Ligand-to-Metal Charge-Transfer States of CuCl ₄ ^{2–} in Solution: A Detailed Transient Absorption Study. Journal of Physical Chemistry B, 2018, 122, 10558-10571.	2.6	9
17	In situ laser-induced codeposition of copper and different metals for fabrication of microcomposite sensor-active materials. Analytica Chimica Acta, 2018, 1044, 138-146.	5.4	20
18	A Comparative Study of Modern Homology Modeling Algorithms for Rhodopsin Structure Prediction. ACS Omega, 2018, 3, 7555-7566.	3.5	43

V A KOCHEMIROVSKY

#	Article	IF	CITATIONS
19	Non-enzymatic sensors based on in situ laser-induced synthesis of copper-gold and gold nano-sized microstructures. Talanta, 2017, 167, 201-207.	5.5	25
20	Solvent Effects on Nonradiative Relaxation Dynamics of Low-Energy Ligand-Field Excited States: A CuCl42– Complex. Journal of Physical Chemistry B, 2017, 121, 4562-4568.	2.6	5
21	The development of methods of analysis of documents on the basis of the methods of Raman spectroscopy and fluorescence analysis. Proceedings of SPIE, 2017, , .	0.8	0
22	Analysis of the Aging Processes of Writing Ink: Raman Spectroscopy versus Gas Chromatography Aspects. Applied Sciences (Switzerland), 2017, 7, 991.	2.5	15
23	Micro- and nanocomposite particles of the Cu–TiO2 system. Glass Physics and Chemistry, 2017, 43, 335-339.	0.7	1
24	Copper Particles Generated During in situ Laser-induced Synthesis Exhibit Catalytic Activity Towards Formation of Gas Phase. Journal of Laser Micro Nanoengineering, 2017, 12, 57-61.	0.1	4
25	Non-enzymatic glucose and hydrogen peroxide sensors based on metal structures produced by laser-induced deposition from solution. , 2016, , .		Ο
26	In situ laser-induced synthesis of copper microstructures with high catalytic properties and sensory characteristics. , 2016, , .		1
27	High rate in situ laser-induced synthesis of copper nanostructures performed from solutions containing potassium bromate and ethanol Microelectronic Engineering, 2016, 157, 13-18.	2.4	18
28	The investigation of dye aging dynamics in writing inks using Raman spectroscopy. Dyes and Pigments, 2016, 131, 239-245.	3.7	22
29	Sensory properties of copper microstructures deposited from water-based solution upon laser irradiation at 532Ånm. Optical and Quantum Electronics, 2016, 48, 1.	3.3	17
30	Analysis of the factors affecting the morphology of the product of laser deposition of metals. Glass Physics and Chemistry, 2016, 42, 218-219.	0.7	1
31	The investigation of aging process of writing inks printed on paper using Raman spectroscopy. , 2016, , .		Ο
32	The copper nanostructures produced by in situ laser synthesis reveal catalytic activity. , 2016, , .		1
33	Ultrafast Photochemistry of Copper(II) Monochlorocomplexes in Methanol and Acetonitrile by Broadband Deep-UV-to-Near-IR Femtosecond Transient Absorption Spectroscopy. Journal of Physical Chemistry A, 2016, 120, 1833-1844.	2.5	15
34	Laser-induced deposition of nanostructured copper microwires on surfaces of composite materials. Surface and Coatings Technology, 2015, 264, 187-192.	4.8	20
35	Mechanism of Formation of Copper(II) Chloro Complexes Revealed by Transient Absorption Spectroscopy and DFT/TDDFT Calculations. Journal of Physical Chemistry B, 2015, 119, 8754-8763.	2.6	14
36	Thermoinduced laser-assisted deposition of molybdenum from aqueous solutions. Proceedings of SPIE, 2015, , .	0.8	0

V A KOCHEMIROVSKY

#	Article	IF	CITATIONS
37	Laser-induced copper deposition from aqueous and aqueous–organic solutions: state of the art and prospects of research. Russian Chemical Reviews, 2015, 84, 1059-1075.	6.5	41
38	Laser-Induced Copper Deposition from Solution: Removing the Thermodynamic Restrictions. Advanced Materials Research, 2014, 893, 45-51.	0.3	0
39	Laser-induced copper deposition with weak reducing agents. , 2013, , .		2
40	Glycerol as a ligand for the laser-induced liquid phase deposition of copper. Glass Physics and Chemistry, 2013, 39, 403-408.	0.7	9
41	The influence of non-ionic surfactants on laser-induced copper deposition. Applied Surface Science, 2013, 280, 494-499.	6.1	20
42	Influence of surfactants on laser-induced copper deposition from solution. Russian Chemical Bulletin, 2013, 62, 1570-1578.	1.5	3
43	Sorbitol as an efficient reducing agent for laser-induced copper deposition. Applied Surface Science, 2012, 259, 55-58.	6.1	26
44	Laser-induced chemical liquid phase deposition of copper from aqueous solutions without reducing agents. Quantum Electronics, 2012, 42, 693-695.	1.0	14
45	Side reactions during laser-induced deposition of copper from aqueous solutions of Cull complexes. Russian Chemical Bulletin, 2012, 61, 1041-1047.	1.5	14
46	Laser-induced chemical liquid phase deposition of metals: chemical reactions in solution and activation of dielectric surfaces. Russian Chemical Reviews, 2011, 80, 869-882.	6.5	32
47	Optimization of the solution composition for laser-induced chemical liquid phase deposition of copper. Russian Chemical Bulletin, 2011, 60, 1564-1570.	1.5	13
48	Composition of the gas phase formed upon laser-induced copper deposition from solutions. Mendeleev Communications, 2011, 21, 34-35.	1.6	20
49	lnï¬,uence of Raman spectra measurement conditions on the dating results of writing compositions. , 0, 60, 61-97.		О