Manfred Hallschmid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2563176/publications.pdf

Version: 2024-02-01

66 papers

4,813 citations

36 h-index 106344 65 g-index

73 all docs 73 docs citations

73 times ranked

5304 citing authors

#	Article	IF	CITATIONS
1	Intranasal insulin improves memory in humans. Psychoneuroendocrinology, 2004, 29, 1326-1334.	2.7	615
2	Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans. Physiological Reviews, 2016, 96, 1169-1209.	28.8	384
3	Intranasal Insulin Improves Memory in Humans: Superiority of Insulin Aspart. Neuropsychopharmacology, 2007, 32, 239-243.	5.4	262
4	Differential Sensitivity of Men and Women to Anorexigenic and Memory-Improving Effects of Intranasal Insulin. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 1339-1344.	3.6	252
5	Intranasal Insulin Reduces Body Fat in Men but not in Women. Diabetes, 2004, 53, 3024-3029.	0.6	251
6	The metabolic burden of sleep loss. Lancet Diabetes and Endocrinology, the, 2015, 3, 52-62.	11.4	240
7	Acute sleep deprivation reduces energy expenditure in healthy men. American Journal of Clinical Nutrition, 2011, 93, 1229-1236.	4.7	199
8	Oxytocin Reduces Reward-Driven Food Intake in Humans. Diabetes, 2013, 62, 3418-3425.	0.6	191
9	Postprandial Administration of Intranasal Insulin Intensifies Satiety and Reduces Intake of Palatable Snacks in Women. Diabetes, 2012, 61, 782-789.	0.6	143
10	Intranasal Insulin Suppresses Food Intake via Enhancement of Brain Energy Levels in Humans. Diabetes, 2012, 61, 2261-2268.	0.6	140
11	Insulin Modulates Food-Related Activity in the Central Nervous System. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 748-755.	3.6	135
12	Intranasal Insulin Enhances Postprandial Thermogenesis and Lowers Postprandial Serum Insulin Levels in Healthy Men. Diabetes, 2011, 60, 114-118.	0.6	117
13	Disturbed Glucoregulatory Response to Food Intake After Moderate Sleep Restriction. Sleep, 2011, 34, 371-377.	1.1	106
14	The effect of intranasal orexin-A (hypocretin-1) on sleep, wakefulness and attention in narcolepsy with cataplexy. Behavioural Brain Research, 2014, 262, 8-13.	2.2	92
15	The Role of Sleep in Motor Sequence Consolidation: Stabilization Rather Than Enhancement. Journal of Neuroscience, 2015, 35, 6696-6702.	3.6	92
16	Safety of intranasal human insulin: A review. Diabetes, Obesity and Metabolism, 2018, 20, 1563-1577.	4.4	70
17	Intranasal Insulin for Alzheimer's Disease. CNS Drugs, 2021, 35, 21-37.	5.9	67
18	Comparable Sensitivity of Postmenopausal and Young Women to the Effects of Intranasal Insulin on Food Intake and Working Memory. Journal of Clinical Endocrinology and Metabolism, 2010, 95, E468-E472.	3.6	66

#	Article	IF	CITATIONS
19	Intranasal insulin increases regional cerebral blood flow in the insular cortex in men independently of cortisol manipulation. Human Brain Mapping, 2014, 35, 1944-1956.	3.6	66
20	Volitional regulation of brain responses to food stimuli in overweight and obese subjects: A real-time fMRI feedback study. Appetite, 2017, 112, 188-195.	3.7	66
21	Relationship Between Cerebrospinal Fluid Visfatin (PBEF/Nampt) Levels and Adiposity in Humans. Diabetes, 2009, 58, 637-640.	0.6	62
22	Interactions between metabolic, reward and cognitive processes in appetite control: Implications for novel weight management therapies. Journal of Psychopharmacology, 2017, 31, 1460-1474.	4.0	61
23	Oxytocin Improves Î ² -Cell Responsivity and Glucose Tolerance in Healthy Men. Diabetes, 2017, 66, 264-271.	0.6	60
24	Euglycemic Infusion of Insulin Detemir Compared With Human Insulin Appears to Increase Direct Current Brain Potential Response and Reduces Food Intake While Inducing Similar Systemic Effects. Diabetes, 2010, 59, 1101-1107.	0.6	58
25	Real-time fMRI neurofeedback training to improve eating behavior by self-regulation of the dorsolateral prefrontal cortex: A randomized controlled trial in overweight and obese subjects. Neurolmage, 2019, 191, 596-609.	4.2	58
26	Intranasal Insulin Suppresses Systemic but Not Subcutaneous Lipolysis in Healthy Humans. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E246-E251.	3.6	52
27	Oxytocin curbs calorie intake via food-specific increases in the activity of brain areas that process reward and establish cognitive control. Scientific Reports, 2018, 8, 2736.	3.3	51
28	Vagus nerve stimulation boosts the drive to work for rewards. Nature Communications, 2020, 11, 3555.	12.8	51
29	Transcortical Direct Current Potential Shift Reflects Immediate Signaling of Systemic Insulin to the Human Brain. Diabetes, 2004, 53, 2202-2208.	0.6	49
30	Current findings on the role of oxytocin in the regulation of food intake. Physiology and Behavior, 2017, 176, 31-39.	2.1	48
31	The Insulin-Mediated Modulation of Visually Evoked Magnetic Fields Is Reduced in Obese Subjects. PLoS ONE, 2011, 6, e19482.	2.5	48
32	Towards the therapeutic use of intranasal neuropeptide administration in metabolic and cognitive disorders. Regulatory Peptides, 2008, 149, 79-83.	1.9	47
33	Intranasal insulin. Journal of Neuroendocrinology, 2021, 33, e12934.	2.6	44
34	Manipulating central nervous mechanisms of food intake and body weight regulation by intranasal administration of neuropeptides in man. Physiology and Behavior, 2004, 83, 55-64.	2.1	44
35	Non-invasive stimulation of vagal afferents reduces gastric frequency. Brain Stimulation, 2020, 13, 470-473.	1.6	42
36	Oxytocin's impact on social face processing is stronger in homosexual than heterosexual men. Psychoneuroendocrinology, 2014, 39, 194-203.	2.7	40

#	Article	IF	CITATIONS
37	Quantification of steroid hormones in plasma using a surrogate calibrant approach and UHPLC-ESI-QTOF-MS/MS with SWATH-acquisition combined with untargeted profiling. Analytica Chimica Acta, 2018, 1022, 70-80.	5.4	40
38	Overweight Humans Are Resistant to the Weight-Reducing Effects of Melanocortin4–10. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 522-525.	3 . 6	36
39	Intranasal Neuropeptide Administration To Target the Human Brain in Health and Disease. Molecular Pharmaceutics, 2015, 12, 2767-2780.	4.6	33
40	Central Nervous Insulin Administration Does Not Potentiate the Acute Glucoregulatory Impact of Concurrent Mild Hyperinsulinemia. Diabetes, 2015, 64, 760-765.	0.6	31
41	Oxytocin and Eating Disorders: A Narrative Review on Emerging Findings and Perspectives. Current Neuropharmacology, 2018, 16, 1111-1121.	2.9	31
42	Central Nervous Insulin Signaling in Sleep-Associated Memory Formation and Neuroendocrine Regulation. Neuropsychopharmacology, 2016, 41, 1540-1550.	5.4	29
43	Outcomes and clinical implications of intranasal insulin administration to the central nervous system. Experimental Neurology, 2019, 317, 180-190.	4.1	29
44	Predictors of real-time fMRI neurofeedback performance and improvement – A machine learning mega-analysis. NeuroImage, 2021, 237, 118207.	4.2	22
45	Glycemic increase induced by intravenous glucose infusion fails to affect hunger, appetite, or satiety following breakfast in healthy men. Appetite, 2016, 105, 562-566.	3.7	17
46	Visual food cues decrease postprandial glucose concentrations in lean and obese men without affecting food intake and related endocrine parameters. Appetite, 2017, 117, 255-262.	3.7	16
47	Metabolic and Cognitive Outcomes of Subchronic Once-Daily Intranasal Insulin Administration in Healthy Men. Frontiers in Endocrinology, 2018, 9, 663.	3.5	16
48	Intranasal insulin decreases circulating cortisol concentrations during early sleep in elderly humans. Neurobiology of Aging, 2017, 54, 170-174.	3.1	15
49	Spotlight on the fetus: how physical activity during pregnancy influences fetal health: a narrative review. BMJ Open Sport and Exercise Medicine, 2020, 6, e000658.	2.9	15
50	Central Nervous Insulin Administration before Nocturnal Sleep Decreases Breakfast Intake in Healthy Young and Elderly Subjects. Frontiers in Neuroscience, 2017, 11, 54.	2.8	13
51	Intensifying sleep slow oscillations does not improve metabolic control in healthy men. Psychoneuroendocrinology, 2019, 99, 1-7.	2.7	10
52	Intranasal oxytocin fails to acutely improve glucose metabolism in obese men. Diabetes, Obesity and Metabolism, 2019, 21, 424-428.	4.4	10
53	Revealing the Potential of Intranasally Administered Orexin A (Hypocretin-1). Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2008, 8, 133-137.	3.4	10
54	Insulin and Estrogen Independently and Differentially Reduce Macronutrient Intake in Healthy Men. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 1393-1401.	3.6	9

#	Article	IF	CITATIONS
55	A Role for Central Nervous Growth Hormone-Releasing Hormone Signaling in the Consolidation of Declarative Memories. PLoS ONE, 2011, 6, e23435.	2.5	9
56	The effect of intranasal insulin on appetite and mood in women with and without obesity: an experimental medicine study. International Journal of Obesity, 2022, 46, 1319-1327.	3.4	9
57	Neonatal body composition: crossectional study in healthy term singletons in Germany. BMC Pediatrics, 2019, 19, 488.	1.7	7
58	Relationship between cerebrospinal fluid concentrations of orexin A/hypocretin-1 and body composition in humans. Peptides, 2018, 102, 26-30.	2.4	5
59	Visual food cues decrease blood glucose and glucoregulatory hormones following an oral glucose tolerance test in normal-weight and obese men. Physiology and Behavior, 2020, 226, 113071.	2.1	5
60	Body composition in term offspring after maternal gestational diabetes does not predict postnatal hypoglycemia. BMC Pediatrics, 2021, 21, 111.	1.7	5
61	Intranasal orexin A modulates sympathetic vascular tone: a pilot study in healthy male humans. Journal of Neurophysiology, 2022, 127, 548-558.	1.8	5
62	Distinct and Convergent Beneficial Effects of Estrogen and Insulin on Cognitive Function in Healthy Young Men. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e582-e593.	3.6	3
63	Association Between Objectively Assessed Sleep and Depressive Symptoms During Pregnancy and Post-partum. Frontiers in Global Women S Health, 2021, 2, 807817.	2.3	3
64	Short-term high-fat feeding induces a reversible net decrease in synaptic AMPA receptors in the hypothalamus. Journal of Nutritional Biochemistry, 2021, 87, 108516.	4.2	2
65	Pregnant women do not display impaired memory formation across one night of sleep. Journal of Sleep Research, 2021, 30, e13204.	3.2	2
66	Sleep loss, obesity and diabetes: a fatal connection?. Expert Review of Endocrinology and Metabolism, 2007, 2, 713-715.	2.4	0