Jan Vermant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2563153/publications.pdf

Version: 2024-02-01

207 papers 13,006 citations

59 h-index 107 g-index

213 all docs

213 docs citations

213 times ranked 12970 citing authors

#	Article	IF	CITATIONS
1	Directed Self-Assembly of Nanoparticles. ACS Nano, 2010, 4, 3591-3605.	7.3	1,938
2	Living on a surface: swarming and biofilm formation. Trends in Microbiology, 2008, 16, 496-506.	3.5	402
3	Exploiting particle shape in solid stabilized emulsions. Soft Matter, 2009, 5, 1717.	1.2	375
4	Self-Assembly and Rheology of Ellipsoidal Particles at Interfaces. Langmuir, 2009, 25, 2718-2728.	1.6	298
5	Flow-induced structure in colloidal suspensions. Journal of Physics Condensed Matter, 2005, 17, R187-R216.	0.7	276
6	A double wall-ring geometry for interfacial shear rheometry. Rheologica Acta, 2010, 49, 131-144.	1.1	266
7	Complex Fluid-Fluid Interfaces: Rheology and Structure. Annual Review of Chemical and Biomolecular Engineering, 2012, 3, 519-543.	3.3	258
8	Ordered Mesoporous Silica Material SBA-15: A Broad-Spectrum Formulation Platform for Poorly Soluble Drugs. Journal of Pharmaceutical Sciences, 2009, 98, 2648-2658.	1.6	237
9	Quantifying dispersion of layered nanocomposites via melt rheology. Journal of Rheology, 2007, 51, 429-450.	1.3	232
10	Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system. Nature Communications, 2013, 4, 1757.	5.8	222
11	A screening study of surface stabilization during the production of drug nanocrystals. Journal of Pharmaceutical Sciences, 2009, 98, 2091-2103.	1.6	191
12	Direct Measurements of the Effects of Salt and Surfactant on Interaction Forces between Colloidal Particles at Waterâ [^] Oil Interfaces. Langmuir, 2008, 24, 1686-1694.	1.6	186
13	Acoustic trapping of active matter. Nature Communications, 2016, 7, 10694.	5.8	175
14	Control over Colloidal Aggregation in Monolayers of Latex Particles at the Oilâ^'Water Interface. Langmuir, 2006, 22, 4936-4945.	1.6	171
15	Packing, Flipping, and Buckling Transitions in Compressed Monolayers of Ellipsoidal Latex Particles. Langmuir, 2006, 22, 6605-6612.	1.6	156
16	Coalescence suppression in model immiscible polymer blends by nano-sized colloidal particles. Rheologica Acta, 2004, 43, 529-538.	1.1	148
17	Efficiently suppressing coalescence in polymer blends using nanoparticles: role of interfacial rheology. Soft Matter, 2010, 6, 3353.	1.2	140
18	Analysis of the magnetic rod interfacial stress rheometer. Journal of Rheology, 2008, 52, 261-285.	1.3	136

#	Article	IF	CITATIONS
19	Quorum signal molecules as biosurfactants affecting swarming in Rhizobium etli. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14965-14970.	3.3	135
20	Interfacial rheology of stable and weakly aggregated two-dimensional suspensions. Physical Chemistry Chemical Physics, 2007, 9, 6463.	1.3	122
21	Finite Ion-Size Effects Dominate the Interaction between Charged Colloidal Particles at an Oil-Water Interface. Physical Review Letters, 2010, 105, 048303.	2.9	121
22	Effect of the viscoelasticity of the suspending fluid on structure formation in suspensions. Journal of Non-Newtonian Fluid Mechanics, 2004, 117, 183-192.	1.0	117
23	Active particles induce large shape deformations in giant lipid vesicles. Nature, 2020, 586, 52-56.	13.7	116
24	Flow-induced orientation of non-spherical particles: Effect of aspect ratio and medium rheology. Journal of Non-Newtonian Fluid Mechanics, 2008, 155, 39-50.	1.0	114
25	Tensiometry and rheology of complex interfaces. Current Opinion in Colloid and Interface Science, 2018, 37, 136-150.	3.4	113
26	Interfacial layers of stimuli-responsive poly-(N-isopropylacrylamide-co-methacrylicacid) (PNIPAM-co-MAA) microgels characterized by interfacial rheology and compression isotherms. Physical Chemistry Chemical Physics, 2010, 12, 14573.	1.3	111
27	Dispensing of rheologically complex fluids: The map of misery. AICHE Journal, 2012, 58, 3242-3255.	1.8	110
28	Synthesis and Directed Self-Assembly of Patterned Anisometric Polymeric Particles. Journal of the American Chemical Society, 2011, 133, 392-395.	6.6	109
29	Design and Synthesis of Hierarchical Materials from Ordered Zeolitic Building Units. Chemistry - A European Journal, 2005, 11, 4306-4313.	1.7	101
30	Solubility Increases Associated with Crystalline Drug Nanoparticles: Methodologies and Significance. Molecular Pharmaceutics, 2010, 7, 1858-1870.	2.3	100
31	Interfacial Rheology and Structure of Tiled Graphene Oxide Sheets. Langmuir, 2012, 28, 7990-8000.	1.6	96
32	Field-induced assembly of colloidal ellipsoids into well-defined microtubules. Nature Communications, 2014, 5, 5516.	5.8	96
33	Phase Separation as a Tool to Control Dispersion of Multiwall Carbon Nanotubes in Polymeric Blends. ACS Applied Materials & Dispersion of Multiwall Carbon Nanotubes in Polymeric Blends. ACS Applied Materials & Dispersion of Multiwall Carbon Nanotubes in Polymeric Blends. ACS Applied Materials & Dispersion of Multiwall Carbon Nanotubes in Polymeric Blends. ACS Applied Materials & Dispersion of Multiwall Carbon Nanotubes in Polymeric Blends. ACS Applied Materials & Dispersion of Multiwall Carbon Nanotubes in Polymeric Blends. ACS Applied Materials & Dispersion of Multiwall Carbon Nanotubes in Polymeric Blends. ACS Applied Materials & Dispersion of Multiwall Carbon Nanotubes in Polymeric Blends. ACS Applied Materials & Dispersion of Multiwall Carbon Nanotubes in Polymeric Blends. ACS Applied Materials & Dispersion of Multiwall Carbon Nanotubes in Polymeric Blends. ACS Applied Materials & Dispersion of Multiwall Carbon Nanotubes in Polymeric Blends. ACS Applied Materials & Dispersion of Multiwall Carbon Nanotubes in Polymeric Blends. ACS Applied Materials & Dispersion Nanotubes in Polymeric Blends. ACS Applied Materials & Dispersion Nanotubes in Polymeric Blends. ACS Applied Materials & Dispersion Nanotubes in Polymeric Blends. ACS Applied Materials & Dispersion Nanotubes in Polymeric Blends. ACS Applied Materials & Dispersion Nanotubes in Polymeric Blends. ACS Applied Materials & Dispersion Nanotubes in Polymeric Blends. ACS Applied Materials & Dispersion Nanotubes in Polymeric Blends. ACS Applied Materials & Dispersion Nanotubes in Polymeric Blends. ACS Applied Materials & Dispersion Nanotubes in Polymeric Blends. ACS Applied Materials & Dispersion Nanotubes in Polymeric Blends. ACS Applied Materials & Dispersion Nanotubes in Polymeric Blends. ACS Applied Materials & Dispersion Nanotubes in Polymeric Blends. ACS Applied Materials & Dispersion Nanotubes &	4.0	94
34	Heterogeneity of the electrostatic repulsion between colloids at the oil–water interface. Soft Matter, 2010, 6, 5327.	1.2	93
35	Flow-Induced Anisotropy and Reversible Aggregation in Two-Dimensional Suspensions. Langmuir, 2003, 19, 9134-9141.	1.6	92
36	Lung surfactants and different contributions to thin film stability. Soft Matter, 2015, 11, 8048-8057.	1.2	88

#	Article	IF	CITATIONS
37	Orthogonal versus parallel superposition measurements. Journal of Non-Newtonian Fluid Mechanics, 1998, 79, 173-189.	1.0	87
38	Transport mechanisms of dissolved organic compounds in aqueous solution during nanofiltration. Journal of Membrane Science, 2006, 279, 311-319.	4.1	86
39	Combined NMR, SAXS, and DLS Study of Concentrated Clear Solutions Used in Silicalite-1 Zeolite Synthesis. Chemistry of Materials, 2007, 19, 3448-3454.	3.2	82
40	Microcrystalline cellulose, a useful alternative for sucrose as a matrix former during freeze-drying of drug nanosuspensions – A case study with itraconazole. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70, 590-596.	2.0	78
41	Rotation of a sphere in a viscoelastic liquid subjected to shear flow. Part I: Simulation results. Journal of Rheology, 2008, 52, 1331-1346.	1.3	77
42	Direct visualization of yielding in model two-dimensional colloidal gels subjected to shear flow. Journal of Rheology, 2009, 53, 1437-1460.	1.3	77
43	Arresting dissolution by interfacial rheology design. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10373-10378.	3.3	76
44	Interfacial shear rheology of DPPC under physiologically relevant conditions. Soft Matter, 2014, 10, 175-186.	1.2	74
45	Versatile ferrofluids based on polyethylene glycol coated iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials, 2012, 324, 1919-1925.	1.0	72
46	Structure and Dynamics of Particle Monolayers at a Liquidâ^'Liquid Interface Subjected to Extensional Flow. Langmuir, 2002, 18, 4372-4375.	1.6	67
47	Flow Behavior of Colloidal Rodlike Viruses in the Nematic Phase. Langmuir, 2005, 21, 8048-8057.	1.6	66
48	Study of the Flow Field in the Magnetic Rod Interfacial Stress Rheometer. Langmuir, 2011, 27, 9345-9358.	1.6	66
49	Effect of Thermally Reduced Graphene Sheets on the Phase Behavior, Morphology, and Electrical Conductivity in Poly [(\hat{l} ±-methyl styrene)-co-(acrylonitrile)/poly(methyl-methacrylate) Blends. ACS Applied Materials & Directors, 2011, 3, 3172-3180.	4.0	66
50	Assessment of the Dispersion Quality in Polymer Nanocomposites by Rheological Methods. Macromolecular Materials and Engineering, 2011, 296, 331-340.	1.7	66
51	Designing and transforming yield-stress fluids. Current Opinion in Solid State and Materials Science, 2019, 23, 100758.	5.6	66
52	Comparison of Measurement Techniques for Evaluating the Pressure Dependence of the Viscosity. Applied Rheology, 2001, 11, 26-37.	3.5	64
53	Micro and macrorheology at fluid–fluid interfaces. Soft Matter, 2014, 10, 7023-7033.	1.2	64
54	Sorption and Interfacial Rheology Study of Model Asphaltene Compounds. Langmuir, 2016, 32, 2900-2911.	1.6	64

#	Article	IF	Citations
55	From drop-shape analysis to stress-fitting elastometry. Advances in Colloid and Interface Science, 2017, 247, 33-51.	7.0	63
56	Anisotropy and Orientation of the Microstructure in Viscous Emulsions during Shear Flow. Langmuir, 1998, 14, 1612-1617.	1.6	60
57	Structure and dynamics of particle monolayers at a liquid–liquid interface subjected to shear flow. Faraday Discussions, 2003, 123, 145-156.	1.6	60
58	Investigation of the Mechanism of Colloidal Silicaliteâ€1 Crystallization by Using DLS, SAXS, and ²⁹ Si NMR Spectroscopy. Chemistry - A European Journal, 2010, 16, 2764-2774.	1.7	60
59	A simple route towards graphene oxide frameworks. Materials Horizons, 2014, 1, 139-145.	6.4	60
60	Large-scale structures in sheared colloidal dispersions. Current Opinion in Colloid and Interface Science, 2001, 6, 489-495.	3.4	59
61	The effect of particle size and migration on the formation of flow-induced structures in viscoelastic suspensions. Rheologica Acta, 2010, 49, 993-1001.	1.1	59
62	Interfacial Rheology of Sterically Stabilized Colloids at Liquid Interfaces and Its Effect on the Stability of Pickering Emulsions. Langmuir, 2017, 33, 4107-4118.	1.6	59
63	Formulate-ability of ten compounds with different physicochemical profiles in SMEDDS. European Journal of Pharmaceutical Sciences, 2009, 38, 479-488.	1.9	58
64	Characterization and modelling of Langmuir interfaces with finite elasticity. Soft Matter, 2017, 13, 5977-5990.	1.2	58
65	Multi Length Scale Analysis of the Microstructure in Sticky Sphere Dispersions during Shear Flow. Langmuir, 2005, 21, 11017-11025.	1.6	57
66	Effect of viscoelasticity on the rotation of a sphere in shear flow. Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 363-372.	1.0	57
67	Surface tension gradient control of bacterial swarming in colonies of Pseudomonas aeruginosa. Soft Matter, 2012, 8, 70-76.	1.2	57
68	Contact Angles of Microellipsoids at Fluid Interfaces. Langmuir, 2014, 30, 4289-4300.	1.6	56
69	Light-switchable propulsion of active particles with reversible interactions. Nature Communications, 2020, 11, 2628.	5.8	55
70	Rough nanoparticles at the oil–water interfaces: their structure, rheology and applications. Soft Matter, 2013, 9, 10791.	1,2	53
71	Separating viscoelastic and compressibility contributions in pressure-area isotherm measurements. Advances in Colloid and Interface Science, 2014, 206, 428-436.	7.0	53
72	Orthogonal superposition measurements using a rheometer equipped with a force rebalanced transducer. Review of Scientific Instruments, 1997, 68, 4090-4096.	0.6	52

#	Article	IF	CITATIONS
73	Determining Relaxation Modes in Flowing Associative Polymers Using Superposition Flows. Macromolecules, 2001, 34, 1376-1383.	2.2	52
74	The conflict between in vitro release studies in human biorelevant media and the in vivo exposure in rats of the lipophilic compound fenofibrate. International Journal of Pharmaceutics, 2011, 414, 118-124.	2.6	52
75	Thin liquid films: Where hydrodynamics, capillarity, surface stressesÂand intermolecular forces meet. Current Opinion in Colloid and Interface Science, 2021, 53, 101441.	3.4	52
76	Emulsions Stabilized by Chitosan-Modified Silica Nanoparticles: pH Control of Structure–Property Relations. Langmuir, 2018, 34, 6147-6160.	1.6	51
77	Rotation of a sphere in a viscoelastic liquid subjected to shear flow. Part II. Experimental results. Journal of Rheology, 2009, 53, 459-480.	1.3	50
78	Millimeter-area, free standing, phospholipid bilayers. Soft Matter, 2016, 12, 4324-4331.	1.2	50
79	How to obtain the elongational viscosity of dilute polymer solutions?. Physica A: Statistical Mechanics and Its Applications, 2003, 319, 125-133.	1.2	49
80	Shear thickening in filled Boger fluids. Journal of Rheology, 2005, 49, 551-567.	1.3	49
81	Characterization of nanoparticles in diluted clear solutions for Silicalite-1 zeolite synthesis using liquid 29Si NMR, SAXS and DLS. Physical Chemistry Chemical Physics, 2008, 10, 5574.	1.3	49
82	Flow-induced structure in colloidal gels: direct visualization of model 2D suspensions. Soft Matter, 2011, 7, 7717.	1.2	49
83	When shape matters. Nature, 2011, 476, 286-287.	13.7	49
84	Structure and rheology during shear-induced crystallization of a latex suspension. Physical Review E, 2002, 66, 022401.	0.8	48
85	Particle-stabilized polymer blends. Rheologica Acta, 2008, 47, 835-839.	1.1	47
86	Reversible Gelation of Rod-Like Viruses Grafted with Thermoresponsive Polymers. Langmuir, 2009, 25, 2437-2442.	1.6	47
87	Operating windows for oscillatory interfacial shear rheology. Journal of Rheology, 2020, 64, 141-160.	1.3	47
88	Experimental Evidence for the Existence of a Wagging Regime in Polymeric Liquid Crystals. Macromolecules, 1997, 30, 1323-1328.	2.2	45
89	Superposition rheometry of a wormlike micellar fluid. Rheologica Acta, 2013, 52, 727-740.	1.1	45
90	Surfactant-induced rigidity of interfaces: a unified approach to free and dip-coated films. Soft Matter, 2015, 11, 2758-2770.	1.2	45

#	Article	IF	CITATIONS
91	Rheology of sterically stabilized dispersions and latices. Progress in Organic Coatings, 2000, 40, 111-117.	1.9	43
92	A comparison between texture and rheological behaviour of lyotropic liquid crystalline polymers during flow. Journal of Non-Newtonian Fluid Mechanics, 1994, 53, 1-23.	1.0	42
93	Soft-Glassy Rheology of Asphaltenes at Liquid Interfaces. Journal of Dispersion Science and Technology, 2015, 36, 1444-1451.	1.3	42
94	Superposition rheology and anisotropy in rheological properties of sheared colloidal gels. Journal of Rheology, 2017, 61, 1035-1048.	1.3	41
95	Rheooptical determination of aspect ratio and polydispersity of nonspherical particles. AICHE Journal, 2001, 47, 790-798.	1.8	38
96	Rheooptical study of the early stages of flow enhanced crystallization in isotactic polypropylene. Rheologica Acta, 2004, 43, 210-222.	1.1	38
97	Computational interfacial rheology. Journal of Non-Newtonian Fluid Mechanics, 2021, 290, 104507.	1.0	38
98	Probing structure in colloidal gels of thermoreversible rodlike virus particles: Rheology and scattering. Journal of Rheology, 2012, 56, 1153-1174.	1.3	37
99	Band formation upon cessation of flow in liquidâ€crystalline polymers. Journal of Rheology, 1994, 38, 1571-1589.	1.3	36
100	Directed Self-Assembly of Spheres into a Two-Dimensional Colloidal Crystal by Viscoelastic Stresses. Langmuir, 2010, 26, 3016-3019.	1.6	36
101	Dynamic transitions and oscillatory melting of a two-dimensional crystal subjected to shear flow. Journal of Rheology, 2004, 48, 159-173.	1.3	35
102	Weak Electrolyte Dependence in the Repulsion of Colloids at an Oil–Water Interface. Langmuir, 2014, 30, 2670-2675.	1.6	35
103	Shear-Stress-Induced Conformational Changes of von Willebrand Factor in a Water–Glycerol Mixture Observed with Single Molecule Microscopy. Journal of Physical Chemistry B, 2014, 118, 5660-5669.	1.2	35
104	Predicting the apparent wall slip when using roughened geometries: A porous medium approach. Journal of Rheology, 2015, 59, 1131-1149.	1.3	35
105	Assessing the Interfacial Activity of Insoluble Asphaltene Layers: Interfacial Rheology versus Interfacial Tension. Langmuir, 2020, 36, 14942-14959.	1.6	35
106	Prediction and Observation of Sustained Oscillations in a Sheared Liquid Crystalline Polymer. Physical Review Letters, 2003, 90, 098304.	2.9	33
107	Flow Dichroism as a Reliable Method to Measure the Hydrodynamic Aspect Ratio of Gold Nanoparticles. ACS Nano, 2011, 5, 4935-4944.	7.3	33
108	Convective Cage Release in Model Colloidal Glasses. Physical Review Letters, 2015, 115, 218301.	2.9	33

#	Article	IF	Citations
109	Flow-Induced Anisotropy in Mixtures of Associative Polymers and Latex Particles. Journal of Colloid and Interface Science, 2000, 224, 179-187.	5.0	32
110	String formation in sheared suspensions in rheologically complex media: The essential role of shear thinning. Journal of Rheology, 2014, 58, 237-254.	1.3	32
111	Bulk rheometry at high frequencies: a review of experimental approaches. Rheologica Acta, 2020, 59, 1-22.	1.1	32
112	Large-Scale Bundle Ordering in Sterically Stabilized Latices. Journal of Colloid and Interface Science, 1999, 211, 221-229.	5.0	31
113	Nanoscale Study of Polymer Dynamics. ACS Nano, 2016, 10, 1434-1441.	7.3	31
114	Adsorption of Ellipsoidal Particles at Liquid–Liquid Interfaces. Langmuir, 2017, 33, 2689-2697.	1.6	31
115	Interfacial rheology of model particles at liquid interfaces and its relation to (bicontinuous) Pickering emulsions. Journal of Physics Condensed Matter, 2018, 30, 023002.	0.7	31
116	Hydrodynamic Interactions between Two Equally Sized Spheres in Viscoelastic Fluids in Shear Flow. Langmuir, 2013, 29, 5701-5713.	1.6	30
117	Controlling the lifetime of antibubbles. Advances in Colloid and Interface Science, 2019, 270, 73-86.	7.0	29
118	Influence of surfactant addition sequence on the suspension properties and electrophoretic deposition behaviour of alumina and zirconia. Journal of the European Ceramic Society, 2006, 26, 933-939.	2.8	28
119	Breakup of Thin Liquid Films: From Stochastic to Deterministic. Physical Review Letters, 2020, 125, 158001.	2.9	28
120	The role of non-starch polysaccharides in determining the air-water interfacial properties of wheat, rye, and oat dough liquor constituents. Food Hydrocolloids, 2020, 105, 105771.	5.6	27
121	Flow-Induced Conformational Changes in Gelatin Structure and Colloidal Stabilization. Langmuir, 2008, 24, 9636-9641.	1.6	25
122	Solidification of Emulsified Polymer Solutions via Phase Inversion (SEPPI): A Generic Way To Prepare Polymers with Controlled Porosity. Chemistry of Materials, 2008, 20, 3457-3465.	3.2	25
123	Deviations from the Stressâ^'Optical Rule in Telechelic Associative Polymer Solutions. Macromolecules, 2005, 38, 1911-1918.	2.2	24
124	Migration of a sphere suspended in viscoelastic liquids in Couette flow: experiments and simulations. Rheologica Acta, 2012, 51, 215-234.	1.1	24
125	Orthogonal and parallel superposition measurements on lyotropic liquid crystalline polymers. Rheologica Acta, 2000, 39, 26-37.	1.1	23
126	Natural suspended particle fragmentation in magnetic scale prevention device. Chemical Engineering Science, 2009, 64, 1904-1906.	1.9	23

#	Article	IF	CITATIONS
127	Anisotropy of nonaqueous layered silicate suspensions subjected to shear flow. Journal of Rheology, 2009, 53, 517-538.	1.3	23
128	A fixture for interfacial dilatational rheometry using a rotational rheometer. European Physical Journal: Special Topics, 2013, 222, 83-97.	1.2	23
129	Fibrin structural and diffusional analysis suggests that fibers are permeable to solute transport. Acta Biomaterialia, 2017, 47, 25-39.	4.1	23
130	Viscosity sensing in heated alkaline zeolite synthesis media. Physical Chemistry Chemical Physics, 2009, 11, 2854-2857.	1.3	22
131	Toward Realistic Large-Area Cell Membrane Mimics: Excluding Oil, Controlling Composition, and Including Ion Channels. Langmuir, 2018, 34, 5880-5888.	1.6	22
132	Designer liquid-liquid interfaces made from transient double emulsions. Nature Communications, 2018, 9, 4763.	5.8	22
133	High-Throughput Study of Phenytoin Solid Dispersions: Formulation Using an Automated Solvent Casting Method, Dissolution Testing, and Scaling-Up. ACS Combinatorial Science, 2008, 10, 637-643.	3.3	21
134	Magnetic field assisted nanoparticle dispersion. Chemical Communications, 2008, , 47-49.	2.2	21
135	Investigation of Nanoparticles Occurring in the Colloidal Silicalite-1 Zeolite Crystallization Process Using Dissolution Experiments. Chemistry of Materials, 2010, 22, 3619-3629.	3.2	21
136	Elongated polystyrene spheres as resonant building blocks in anisotropic colloidal crystals. Soft Matter, 2013, 9, 9129.	1.2	21
137	Thermocapillary Fingering in Surfactant-Laden Water Droplets. Langmuir, 2014, 30, 13338-13344.	1.6	21
138	Simple Optical Imaging of Nanoscale Features in Free-Standing Films. ACS Omega, 2016, 1, 363-370.	1.6	21
139	Effects of particle stiffness on the extensional rheology of model rod-like nanoparticle suspensions. Soft Matter, 2019, 15, 833-841.	1.2	21
140	Fabrication of Planar Colloidal Clusters with Template-Assisted Interfacial Assembly. Langmuir, 2015, 31, 1632-1640.	1.6	20
141	Growth of Itraconazole Nanofibers in Supersaturated Simulated Intestinal Fluid. Molecular Pharmaceutics, 2010, 7, 905-913.	2.3	19
142	Quantifying the dispersion quality of partially aggregated colloidal dispersions by high frequency rheology. Soft Matter, 2017, 13, 7897-7906.	1.2	19
143	Mimicking coalescence using a pressure-controlled dynamic thin film balance. Soft Matter, 2020, 16, 9410-9422.	1.2	19
144	The role of lipids in determining the air-water interfacial properties of wheat, rye, and oat dough liquor constituents. Food Chemistry, 2020, 319, 126565.	4.2	17

#	Article	IF	CITATIONS
145	Extensional rheometry at interfaces: Analysis of the Cambridge Interfacial Tensiometer. Journal of Rheology, 2012, 56, 1225.	1.3	16
146	A versatile subphase exchange cell for interfacial shear rheology. Rheologica Acta, 2017, 56, 1-10.	1.1	16
147	Rheo-optical Analysis of Functionalized Graphene Suspensions. Langmuir, 2018, 34, 7844-7851.	1.6	16
148	Surface viscoelasticity in model polymer multilayers: From planar interfaces to rising bubbles. Journal of Rheology, 2019, 63, 815-828.	1.3	16
149	Self-assembly of ellipsoidal particles at fluid-fluid interfaces with an empirical pair potential. Journal of Colloid and Interface Science, 2019, 534, 205-214.	5.0	16
150	Editorial: dynamics and rheology of complex fluid–fluid interfaces. Soft Matter, 2011, 7, 7583.	1.2	15
151	From near hard spheres to colloidal surfboards. Faraday Discussions, 2016, 191, 325-349.	1.6	15
152	Drag on a spherical particle at the air–liquid interface: Interplay between compressibility, Marangoni flow, and surface viscosities. Physics of Fluids, 2021, 33, .	1.6	15
153	Effect of fillers on the steady state rheological behaviour of liquid crystalline polymers. Rheologica Acta, 1998, 37, 463-469.	1.1	14
154	Interfacial behaviour of crayfish protein isolate. Food Hydrocolloids, 2013, 30, 470-476.	5.6	14
155	Limiting coalescence by interfacial rheology: over-compressed polyglycerol ester layers. Rheologica Acta, 2016, 55, 537-546.	1.1	14
156	Stress Contributions in Colloidal Suspensions: The Smooth, the Rough, and the Hairy. Physical Review Letters, 2019, 122, 218001.	2.9	14
157	Rough geometries with viscoelastic Boger fluids: Predicting the apparent wall slip with a porous medium approach. Journal of Rheology, 2019, 63, 569-582.	1.3	14
158	Interfacial properties of highly soluble crayfish protein derivatives. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 499, 10-17.	2.3	13
159	Semifluorinated Alkanes at the Air–Water Interface: Tailoring Structure and Rheology at the Molecular Scale. Langmuir, 2016, 32, 3139-3151.	1.6	13
160	Flow dynamics of concentrated starlike micelles: A superposition rheometry investigation into relaxation mechanisms. Journal of Rheology, 2019, 63, 641-653.	1.3	13
161	Orthogonal superposition rheometry of model colloidal glasses with short-ranged attractions. Journal of Rheology, 2019, 63, 533-546.	1.3	13
162	Viscoelastic cluster densification in sheared colloidal gels. Soft Matter, 2020, 16, 2437-2447.	1.2	13

#	Article	IF	CITATIONS
163	Rheology and Structure of Suspensions in Liquid Crystalline Hydroxypropylcellulose Solutions. Langmuir, 2002, 18, 5695-5703.	1.6	12
164	Director Orientation of Nematic Sideâ€Chain Liquid Crystalline Polymers Under Shear Flow: Comparison of a Flowâ€Aligning and a Nonâ€Flowâ€Aligning Polysiloxane. Macromolecular Chemistry and Physics, 2007, 208, 2161-2172.	1.1	12
165	Electrically Conductive Thin Films Derived from Bulk Graphite and Liquid–Liquid Interface Assembly. Advanced Materials Interfaces, 2019, 6, 1801570.	1.9	11
166	"Tying the Knot†Enhanced Recycling through Ultrafast Entangling across Ultrahigh Molecular Weight Polyethylene Interfaces. Macromolecules, 2021, 54, 9452-9460.	2.2	11
167	The role of surface adhesion on the macroscopic wrinkling of biofilms. ELife, 0, $11, \dots$	2.8	11
168	Influence of ammonium salt of poly-methacrylic acid and butylamine addition on the viscosity and electrophoretic deposition behavior of ethanol-based powder suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 267, 74-78.	2.3	10
169	Ultrafast imaging of soft materials during shear flow. Korea Australia Rheology Journal, 2019, 31, 229-240.	0.7	10
170	Interfacial Fourier transform shear rheometry of complex fluid interfaces. Rheologica Acta, 2019, 58, 29-45.	1.1	10
171	Dynamic stabilisation during the drainage of thin film polymer solutions. Soft Matter, 2021, 17, 4790-4803.	1.2	10
172	Orientation dynamics of dilute functionalized graphene suspensions in oscillatory flow. Physical Review Fluids, 2018, 3, .	1.0	10
173	Effects of particles on the steady state and transient rheology of lyotropic hydroxypropylcellulose solutions. Journal of Rheology, 2000, 44, 1417-1432.	1.3	9
174	Electric field controlled capillary traps at water/oil interfaces. Soft Matter, 2011, 7, 10597.	1.2	9
175	Viscoelasticity Sensor with Resonance Tuning and Low-Cost Interface. Procedia Engineering, 2011, 25, 623-626.	1.2	8
176	X-ray scattering in the vorticity direction and rheometry from confined fluids. Review of Scientific Instruments, 2014, 85, 065108.	0.6	8
177	Molecularly Designed Interfacial Viscoelasticity by Dendronized Polymers: From Flexible Macromolecules to Colloidal Objects. ACS Nano, 2019, 13, 14217-14229.	7. 3	8
178	Comparison between 2-hydroxypropyl- \hat{l}^2 -cyclodextrin and 2-hydroxypropyl- \hat{l}^3 -cyclodextrin for inclusion complex formation with danazol. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 71, 137-147.	1.6	7
179	Interfacial properties of crayfish protein isolate/chitosan mixed films. Food Hydrocolloids, 2013, 32, 395-401.	5.6	7
180	Structuring Hydrogel Cross-Link Density Using Hierarchical Filament 3D Printing. ACS Applied Materials & Samp; Interfaces, 2022, 14, 15667-15677.	4.0	7

#	Article	IF	CITATIONS
181	Divide, Conquer, and Stabilize: Engineering Strong Fluid–Fluid Interfaces. Langmuir, 2022, 38, 6499-6505.	1.6	7
182	An evaluation of the Larson-Doi model for liquid crystalline polymers using recoil. Rheologica Acta, 1999, 38, 537-547.	1.1	6
183	Simple microfluidic stagnation point flow geometries. Biomicrofluidics, 2016, 10, 043506.	1.2	6
184	Thin film drainage dynamics of wheat and rye dough liquors and oat batter liquor. Food Hydrocolloids, 2021, 116, 106624.	5.6	6
185	Variations in human saliva viscoelasticity affect aerosolization propensity. Soft Matter, 2022, 18, 2528-2540.	1.2	6
186	Role of Ambient Composition on the Formation and Shape of Watermarks on a Bare Silicon Substrate. ECS Journal of Solid State Science and Technology, 2014, 3, N3081-N3086.	0.9	5
187	Flow Alignment of Prolate Particles on a Rotating Disk Electrode. Journal of the Electrochemical Society, 2006, 153, C660.	1.3	4
188	Modeling and data analysis of a multimode resonator sensor loaded with viscous and viscoelastic fluids. , 2012 , , .		4
189	Langmuir monolayer characterization via polymer microtensiometers. Sensors and Actuators A: Physical, 2015, 229, 110-117.	2.0	4
190	Oneâ€step creation of hierarchical fractal structures. Polymer Engineering and Science, 2021, 61, 1257-1269.	1.5	4
191	Letter to the Editor Regarding the Article by Wittmaack. Chemical Research in Toxicology, 2012, 25, 4-6.	1.7	3
192	A Polymer Microdevice for Tensiometry of Insoluble Components. Procedia Engineering, 2014, 87, 80-83.	1.2	3
193	The Role of Biosurfactants in Bacterial Systems. Biological and Medical Physics Series, 2015, , 189-204.	0.3	3
194	Efficient Processing Pathways to Create High Interface Materials. RSC Soft Matter, 2020, , 193-210.	0.2	3
195	Shear wave sensors for viscoelastic properties. Procedia Engineering, 2010, 5, 1316-1319.	1.2	2
196	Special issue devoted to novel trends in rheology. Rheologica Acta, 2013, 52, 189-190.	1.1	2
197	3rd Early Career Issue. Rheologica Acta, 2014, 53, 883-884.	1.1	1
198	Special issue devoted to novel trends in rheology. Rheologica Acta, 2019, 58, 419-420.	1.1	1

#	Article	lF	CITATIONS
199	B2.4 - Spring-Plate Resonator Sensor for Measuring Viscosity of Small Amounts of Complex Fluids. , 2011, , .		1
200	Effects of bulk elasticity on sheet formation and expansion. Journal of Non-Newtonian Fluid Mechanics, 2022, 308, 104882.	1.0	1
201	Unexpected microgravity effect during the self-organization of silicalite-1 nanoslabs. Microgravity Science and Technology, 2005, 16, 74-78.	0.7	O
202	A novel method to prepare porous membranes/polymers with easy control over porosity and increased compaction resistance. Desalination, 2006, 199, 34-36.	4.0	0
203	Rotation of a Sphere in a Viscoelastic Fluid under Flow. AIP Conference Proceedings, 2008, , .	0.3	O
204	Self-Assembly and Surface Rheology of 2D Suspension of Ellipsoids. AIP Conference Proceedings, 2008,	0.3	0
205	The end of an era and the start of something new. Rheologica Acta, 2016, 55, 871-872.	1.1	0
206	Active Particles to Interrogate Bilayer Mechanics. Chimia, 2021, 75, 104-104.	0.3	0
207	Parallel Versus Orthogonal Superposition Rheometry. , 1998, , 503-504.		О