Valentin I E Queloz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2563083/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hysteresis-Free Lead-Free Double-Perovskite Solar Cells by Interface Engineering. ACS Energy Letters, 2018, 3, 1781-1786.	17.4	182
2	Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules. Nature Nanotechnology, 2022, 17, 598-605.	31.5	121
3	Band-bending induced passivation: high performance and stable perovskite solar cells using a perhydropoly(silazane) precursor. Energy and Environmental Science, 2020, 13, 1222-1230.	30.8	114
4	Dynamical evolution of the 2D/3D interface: a hidden driver behind perovskite solar cell instability. Journal of Materials Chemistry A, 2020, 8, 2343-2348.	10.3	112
5	In Situ Analysis Reveals the Role of 2D Perovskite in Preventing Thermal-Induced Degradation in 2D/3D Perovskite Interfaces. Nano Letters, 2020, 20, 3992-3998.	9.1	95
6	An Efficient Approach to Fabricate Air‣table Perovskite Solar Cells via Addition of a Selfâ€Polymerizing Ionic Liquid. Advanced Materials, 2020, 32, e2003801.	21.0	84
7	Selfâ€Crystallized Multifunctional 2D Perovskite for Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1910620.	14.9	68
8	Crystal Orientation Drives the Interface Physics at Two/Three-Dimensional Hybrid Perovskites. Journal of Physical Chemistry Letters, 2019, 10, 5713-5720.	4.6	47
9	Green-Emitting Lead-Free Cs ₄ SnBr ₆ Zero-Dimensional Perovskite Nanocrystals with Improved Air Stability. Journal of Physical Chemistry Letters, 2020, 11, 618-623.	4.6	42
10	Fashioning Fluorous Organic Spacers for Tunable and Stable Layered Hybrid Perovskites. Chemistry of Materials, 2018, 30, 8211-8220.	6.7	35
11	Pushing the limit of Cs incorporation into FAPbBr3 perovskite to enhance solar cells performances. APL Materials, 2019, 7, .	5.1	33
12	Isomeric Carbazole-Based Hole-Transporting Materials: Role of the Linkage Position on the Photovoltaic Performance of Perovskite Solar Cells. Chemistry of Materials, 2021, 33, 3286-3296.	6.7	25
13	Exploring the role of halide mixing in lead-free BZA ₂ SnX ₄ two dimensional hybrid perovskites. Journal of Materials Chemistry A, 2020, 8, 1875-1886.	10.3	21
14	Stable Perovskite Solar Cells Using Molecularly Engineered Functionalized Oligothiophenes as Lowâ€Cost Holeâ€Transporting Materials. Small, 2021, 17, e2100783.	10.0	19
15	A Facile Preparative Route of Nanoscale Perovskites over Mesoporous Metal Oxide Films and Their Applications to Photosensitizers and Light Emitters. Advanced Functional Materials, 2018, 28, 1803801.	14.9	17
16	Fluorination of Organic Spacer Impacts on the Structural and Optical Response of 2D Perovskites. Frontiers in Chemistry, 2019, 7, 946.	3.6	14
17	Spatial Charge Separation as the Origin of Anomalous Stark Effect in Fluorous 2D Hybrid Perovskites. Advanced Functional Materials, 2020, 30, 2000228.	14.9	12
18	Revealing Weak Dimensional Confinement Effects in Excitonic Silver/Bismuth Double Perovskites. Jacs Au, 2022, 2, 136-149.	7.9	12

#	Article	IF	CITATIONS
19	Phosphine Oxide Derivative as a Passivating Agent to Enhance the Performance of Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 1259-1268.	5.1	11
20	Beyond Tolerance Factor: Using Deep Learning for Prediction Formability of ABX3 Perovskite Structures. Advanced Theory and Simulations, 2021, 4, 2100021.	2.8	5