
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2562390/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emerging biocompatible nanoplatforms for the potential application in diagnosis and therapy of deep tumors. View, 2022, 3, 20200174.	5.3	30
2	Chemical chaperone delivered nanoscale metal–organic frameworks as inhibitor of endoplasmic reticulum for enhanced sensitization of thermo-chemo therapy. Chinese Chemical Letters, 2022, 33, 1604-1608.	9.0	12
3	Synthesis of MoS2 nanoflowers on CdS nanorods with a simple route and their application in removal of dyes. Journal of Nanoparticle Research, 2022, 24, 1.	1.9	7
4	Lanthanide europium MOF nanocomposite as the theranostic nanoplatform for microwave thermo-chemotherapy and fluorescence imaging. Journal of Nanobiotechnology, 2022, 20, 133.	9.1	18
5	MOF@COF nanocapsule for the enhanced microwave thermal-dynamic therapy and anti-angiogenesis of colorectal cancer. Biomaterials, 2022, 283, 121472.	11.4	42
6	MnMOF-based microwave-glutathione dual-responsive nano-missile for enhanced microwave Thermo-dynamic chemotherapy of drug-resistant tumors. Chemical Engineering Journal, 2022, 439, 135582.	12.7	24
7	High Biocompatible Poly(lactic-co-glycolic acid)-Based Nanosensitizer With Magnetic Resonance Imaging Capacity for Tumor Targeted Microwave Hyperthermia and Chemotherapy. Journal of Biomedical Nanotechnology, 2022, 18, 369-380.	1.1	0
8	A core–shell liquid metal-Cu nanoparticle with glutathione consumption <i>via</i> an <i>in situ</i> replacement strategy for tumor combination treatment of chemodynamic, microwave dynamic and microwave thermal therapy. Biomaterials Science, 2022, 10, 3503-3513.	5.4	12
9	Carbon dots with tunable emission based on pH values. Materials Express, 2022, 12, 271-277.	0.5	1
10	A multifunctional nanoplatform for improving microwave hyperthermia by a combination therapy of vessel disruptive agent and immune modulator. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112616.	5.0	1
11	Nanozymes-engineered metal–organic frameworks for enhanced microwave thermodynamic therapy in PDX of hepatic carcinoma. Chemical Engineering Journal, 2022, 450, 138092.	12.7	15
12	Metalâ€Organic Frameworksâ€Based Fluorescent Nanocomposites for Bioimaging in Living Cells and <i>in vivo</i> ^{â€} . Chinese Journal of Chemistry, 2021, 39, 473-487.	4.9	21
13	Regulating glucose metabolism using nanomedicines for cancer therapy. Journal of Materials Chemistry B, 2021, 9, 5749-5764.	5.8	6
14	Co-Administration of iRGD with Sorafenib-Loaded Iron-Based Metal-Organic Framework as a Targeted Ferroptosis Agent for Liver Cancer Therapy. International Journal of Nanomedicine, 2021, Volume 16, 1037-1050.	6.7	61
15	Nanoscale metal organic frameworks inhibition of pyruvate kinase of M2. Chinese Chemical Letters, 2021, 32, 3087-3089.	9.0	9
16	Fluorescent hollow ZrO2@CdTe nanoparticles-based lateral flow assay for simultaneous detection of C-reactive protein and troponin T. Mikrochimica Acta, 2021, 188, 209.	5.0	6
17	Preparation and properties of covalent organic framework nanoparticles with high drug loading. Frontiers of Materials Science, 2021, 15, 465-470.	2.2	3
18	Nanoengineered biomimetic Cu-based nanoparticles for multifunational and efficient tumor treatment. Biomaterials, 2021, 276, 121016.	11.4	20

#	Article	IF	CITATIONS
19	Photothermal photodynamic therapy and enhanced radiotherapy of targeting copolymer-coated liquid metal nanoparticles on liver cancer. Colloids and Surfaces B: Biointerfaces, 2021, 207, 112023.	5.0	21
20	Enhanced Photothermal-Photodynamic Therapy by Indocyanine Green and Curcumin-Loaded Layered MoS2 Hollow Spheres via Inhibition of P-Glycoprotein. International Journal of Nanomedicine, 2021, Volume 16, 433-442.	6.7	20
21	Rapid and simultaneous detection of heart-type fatty acid binding protein and cardiac troponin using a lateral flow assay based on metal organic framework@CdTe nanoparticles. Nanoscale, 2021, 13, 7844-7850.	5.6	23
22	Evaluation of Apigenin Inhibiting Lactate Dehydrogenase Activity Based on CdTe Quantum Dots Fluorescence. Journal of Biomedical Nanotechnology, 2021, 17, 1806-1811.	1.1	1
23	MOF-derived nano-popcorns synthesized by sonochemistry as efficient sensitizers for tumor microwave thermal therapy. Biomaterials, 2020, 234, 119773.	11.4	43
24	Advanced nanotechnology for hypoxia-associated antitumor therapy. Nanoscale, 2020, 12, 2855-2874.	5.6	54
25	Continuous "Snowing―Thermotherapeutic Graphene. Advanced Materials, 2020, 32, e2002024.	21.0	20
26	Luminescent silver nanoclusters for efficient detection of adenosine triphosphate in a wide range of pH values. Chinese Chemical Letters, 2020, 31, 3117-3120.	9.0	16
27	Keratin–Poly(2-methacryloxyethyl phosphatidylcholine) Conjugate-Based Micelles as a Tumor Micro-Environment-Responsive Drug-Delivery System with Long Blood Circulation. Langmuir, 2020, 36, 3540-3549.	3.5	12
28	Preparation and characterization of Keratin-PEG conjugate-based micelles as a tumor microenvironment-responsive drug delivery system. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 1163-1178.	3.5	14
29	<scp>l</scp> -Cysteine decorated nanoscale metal–organic frameworks delivering valproic acid/cisplatin for drug-resistant lung cancer therapy. Chemical Communications, 2020, 56, 3919-3922.	4.1	17
30	Delivery of Arsenic Trioxide by Multifunction Nanoparticles To Improve the Treatment of Hepatocellular Carcinoma. ACS Applied Materials & Interfaces, 2020, 12, 8016-8029.	8.0	25
31	Dendritic silica with carbon dots and gold nanoclusters for dual nanozymes. New Journal of Chemistry, 2020, 44, 1988-1992.	2.8	23
32	Nanoscale Metalâ€Organic Frameworks: Synthesis, Biocompatibility, Imaging Applications, and Thermal and Dynamic Therapy of Tumors. Advanced Functional Materials, 2020, 30, 1908924.	14.9	108
33	Tumor reoxygenation for enhanced combination of radiation therapy and microwave thermal therapy using oxygen generation in situ by CuO nanosuperparticles under microwave irradiation. Theranostics, 2020, 10, 4659-4675.	10.0	32
34	Preparation and enhanced properties of ZrMOF@CdTe nanoparticles with high-density quantum dots. Frontiers of Materials Science, 2020, 14, 155-162.	2.2	1
35	Zirconium metal-organic framework nanocrystal as microwave sensitizer for enhancement of tumor therapy. Chinese Chemical Letters, 2019, 30, 481-484.	9.0	16
36	Dual-Functional Supernanoparticles with Microwave Dynamic Therapy and Microwave Thermal Therapy. Nano Letters, 2019, 19, 5277-5286.	9.1	107

#	Article	IF	CITATIONS
37	<p>Toxicity, biodistribution and oxidative damage caused by zirconia nanoparticles after intravenous injection</p> . International Journal of Nanomedicine, 2019, Volume 14, 5175-5186.	6.7	30
38	Transarterial Infusion of iRGD-Modified ZrO2 Nanoparticles with Lipiodol Improves the Tissue Distribution of Doxorubicin and Its Antitumor Efficacy. Journal of Vascular and Interventional Radiology, 2019, 30, 2026-2035.e2.	0.5	5
39	Observation and implication of halide exchange beyond CsPbX ₃ perovskite nanocrystals. Nanoscale, 2019, 11, 3123-3128.	5.6	15
40	Multifunctional iron-based Metalâ^'Organic framework as biodegradable nanozyme for microwave enhancing dynamic therapy. Biomaterials, 2019, 214, 119223.	11.4	125
41	DOX-Conjugated keratin nanoparticles for pH-Sensitive drug delivery. Colloids and Surfaces B: Biointerfaces, 2019, 181, 1012-1018.	5.0	38
42	Multifunctional and flexible ZrO ₂ -coated EGaIn nanoparticles for photothermal therapy. Nanoscale, 2019, 11, 10183-10189.	5.6	61
43	High Biocompatible ZIF-8 Coated by ZrO ₂ for Chemo-microwave Thermal Tumor Synergistic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 10520-10531.	8.0	83
44	Microwave Responsive Nanoplatform via P-Selectin Mediated Drug Delivery for Treatment of Hepatocellular Carcinoma with Distant Metastasis. Nano Letters, 2019, 19, 2914-2927.	9.1	66
45	Quercetin-Modified Metal–Organic Frameworks for Dual Sensitization of Radiotherapy in Tumor Tissues by Inhibiting the Carbonic Anhydrase IX. ACS Nano, 2019, 13, 4209-4219.	14.6	85
46	Laser-Induced Antibacterial Activity of Novel Symmetric Carbazole-Based Ethynylpyridine Photosensitizers. ACS Omega, 2018, 3, 3737-3743.	3.5	5
47	Mitochondria-targeted zirconium metal–organic frameworks for enhancing the efficacy of microwave thermal therapy against tumors. Biomaterials Science, 2018, 6, 1535-1545.	5.4	52
48	Biocompatible and biodegradable zeolitic imidazolate framework/polydopamine nanocarriers for dual stimulus triggered tumor thermo-chemotherapy. Biomaterials, 2018, 162, 132-143.	11.4	218
49	Microwave-Activated Mn-Doped Zirconium Metal–Organic Framework Nanocubes for Highly Effective Combination of Microwave Dynamic and Thermal Therapies Against Cancer. ACS Nano, 2018, 12, 2201-2210.	14.6	176
50	Renal-clearable quaternary chalcogenide nanocrystal for photoacoustic/magnetic resonance imaging guided tumor photothermal therapy. Biomaterials, 2018, 159, 108-118.	11.4	42
51	Interlayer expansion of 2D MoS ₂ nanosheets for highly improved photothermal therapy of tumors <i>in vitro</i> and <i>in vivo</i> . Chemical Communications, 2018, 54, 13989-13992.	4.1	41
52	Superoxide dismutase mimetic ability of Mn-doped ZnS QDs. Chinese Chemical Letters, 2018, 29, 1865-1868.	9.0	25
53	Oxygen Production of Modified Core–Shell CuO@ZrO ₂ Nanocomposites by Microwave Radiation to Alleviate Cancer Hypoxia for Enhanced Chemo-Microwave Thermal Therapy. ACS Nano, 2018, 12, 12721-12732.	14.6	92
54	CsPbX ₃ /Cs ₄ PbX ₆ core/shell perovskite nanocrystals. Chemical Communications, 2018, 54, 6300-6303.	4.1	109

XIANWEI MENG

#	Article	IF	CITATIONS
55	Nanoengineering of nanorattles for tumor treatment by CT imaging-guided simultaneous enhanced microwave thermal therapy and managing inflammation. Biomaterials, 2018, 179, 122-133.	11.4	43
56	Mitochondria-targeting nanoparticles for enhanced microwave ablation of cancer. Nanoscale, 2018, 10, 15677-15685.	5.6	37
57	A tumor treatment strategy based on biodegradable BSA@ZIF-8 for simultaneously ablating tumors and inhibiting infection. Nanoscale Horizons, 2018, 3, 606-615.	8.0	43
58	Toxicity and bio-distribution of carbon dots after single inhalation exposure in vivo. Chinese Chemical Letters, 2018, 29, 895-898.	9.0	26
59	Chemical Synthesis and Applications of Colloidal Metal Phosphide Nanocrystals. Frontiers in Chemistry, 2018, 6, 652.	3.6	21
60	Therapeutic efficacy of novel microwave-sensitized mPEG-PLGA@ZrO ₂ @(DOX + ILS) drug-loaded microspheres in rabbit VX ₂ liver tumours. Nanoscale, 2017, 9, 3429-3439.	5.6	28
61	Imaging-guided synergetic therapy of orthotopic transplantation tumor by superselectively arterial administration of microwave-induced microcapsules. Biomaterials, 2017, 133, 144-153.	11.4	30
62	11-Mercaptoundecanoic acid functionalized gold nanoclusters as fluorescent probes for the sensitive detection of Cu2+ and Fe3+ ions. Chinese Chemical Letters, 2017, 28, 1901-1904.	9.0	35
63	MoS ₂ nanosheets encapsulated in sodium alginate microcapsules as microwave embolization agents for large orthotopic transplantation tumor therapy. Nanoscale, 2017, 9, 14846-14853.	5.6	32
64	Porous PLGA microspheres with recruited ions and doxorubicin for triple-combination therapy of larger hepatocellular carcinoma. Journal of Materials Chemistry B, 2017, 5, 9025-9032.	5.8	5
65	Ball-in-ball ZrO ₂ nanostructure for simultaneous CT imaging and highly efficient synergic microwave ablation and tri-stimuli-responsive chemotherapy of tumors. Nanoscale, 2017, 9, 8834-8847.	5.6	33
66	A Dual-Emission Nanohybrid of Gold Nanoclusters and Carbon Dots for Ratiometric Fluorescence Detection of Reactive Oxygen Species and Glucose. Journal of Biomedical Nanotechnology, 2017, 13, 1425-1434.	1.1	10
67	Micro-Nanomaterials for Tumor Microwave Hyperthermia: Design, Preparation, and Application. Current Drug Delivery, 2017, 14, 307-322.	1.6	18
68	Multifunctional Carbon–Silica Nanocapsules with Gold Core for Synergistic Photothermal and Chemoâ€Cancer Therapy under the Guidance of Bimodal Imaging. Advanced Functional Materials, 2016, 26, 4252-4261.	14.9	113
69	Cancer Therapy: Multifunctional Carbon-Silica Nanocapsules with Gold Core for Synergistic Photothermal and Chemo-Cancer Therapy under the Guidance of Bimodal Imaging (Adv. Funct. Mater.) Tj ETQq1	1 04798431	L43gBT /Ove
70	Ultrasensitive fluorescence immunoassay for detection of ochratoxin A using catalase-mediated fluorescence quenching of CdTe QDs. Nanoscale, 2016, 8, 9390-9397.	5.6	66
71	Facile synthesis of hierarchical MoS ₂ –carbon microspheres as a robust anode for lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 9653-9660.	10.3	73
72	Biocompatible Hollow Polydopamine Nanoparticles Loaded Ionic Liquid Enhanced Tumor Microwave Thermal Ablation in Vivo. ACS Applied Materials & Interfaces, 2016, 8, 11237-11245.	8.0	71

#	Article	IF	CITATIONS
73	Highly stable microwave susceptible agents via encapsulation of Ti-mineral superfine powders in urea-formaldehyde resin microcapsules for tumor hyperthermia therapy. Nanoscale, 2016, 8, 11044-11051.	5.6	24
74	Multisynergistic Platform for Tumor Therapy by Mild Microwave Irradiation-Activated Chemotherapy and Enhanced Ablation. ACS Nano, 2016, 10, 9516-9528.	14.6	97
75	Graphitic carbon nitride nanosheets with tunable optical properties and their superoxide dismutase mimetic ability. RSC Advances, 2016, 6, 92839-92844.	3.6	23
76	In Vivo Magnetic Resonance Imaging and Microwave Thermotherapy of Cancer Using Novel Chitosan Microcapsules. Nanoscale Research Letters, 2016, 11, 334.	5.7	17
77	Layered MoS ₂ Hollow Spheres for Highlyâ€Efficient Photothermal Therapy of Rabbit Liver Orthotopic Transplantation Tumors. Small, 2016, 12, 2046-2055.	10.0	101
78	Size Effect of Mesoporous and Hollow Silica Nanoparticles on Solid Tumor Targeting and Penetration. Journal of Nanoscience and Nanotechnology, 2016, 16, 6766-6772.	0.9	10
79	Doxorubicin-loaded ionic liquid–polydopamine nanoparticles for combined chemotherapy and microwave thermal therapy of cancer. RSC Advances, 2016, 6, 32434-32440.	3.6	41
80	Layered MoS ₂ nanoflowers for microwave thermal therapy. Journal of Materials Chemistry B, 2016, 4, 2133-2141.	5.8	55
81	Hollow ZrO ₂ /PPy nanoplatform for improved drug delivery and real-time CT monitoring in synergistic photothermal-chemo cancer therapy. Journal of Materials Chemistry B, 2016, 4, 859-866.	5.8	32
82	Encapsulating Ionic Liquid and Fe ₃ O ₄ Nanoparticles in Gelatin Microcapsules as Microwave Susceptible Agent for MR Imaging-guided Tumor Thermotherapy. ACS Applied Materials & Interfaces, 2015, 7, 13612-13619.	8.0	41
83	Gelatin microcapsules for enhanced microwave tumor hyperthermia. Nanoscale, 2015, 7, 3147-3154.	5.6	41
84	Plasmonic Copper Sulfide Nanocrystals Exhibiting Near-Infrared Photothermal and Photodynamic Therapeutic Effects. ACS Nano, 2015, 9, 1788-1800.	14.6	536
85	Insights into a microwave susceptible agent for minimally invasive microwave tumor thermal therapy. Biomaterials, 2015, 44, 91-102.	11.4	74
86	Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1915-1924.	3.3	203
87	Fast synthesis of fluorescent SiO ₂ @CdTe nanoparticles with reusability in detection of H ₂ O ₂ . Journal of Materials Chemistry B, 2015, 3, 6385-6390.	5.8	15
88	Fluorescence switching method for cascade detection of salicylaldehyde and zinc(II) ion using protein protected gold nanoclusters. Biosensors and Bioelectronics, 2015, 74, 322-328.	10.1	44
89	A smart all-in-one theranostic platform for CT imaging guided tumor microwave thermotherapy based on IL@ZrO ₂ nanoparticles. Chemical Science, 2015, 6, 5016-5026.	7.4	75
90	Facile synthesis of a highly luminescent carbon dot@silica nanorattle for in vivo bioimaging. RSC Advances, 2015, 5, 46158-46162.	3.6	18

#	Article	IF	CITATIONS
91	One-pot synthesis of active copper-containing carbon dots with laccase-like activities. Nanoscale, 2015, 7, 19641-19646.	5.6	123
92	A sensitive biosensor for the fluorescence detection of the acetylcholinesterase reaction system based on carbon dots. Colloids and Surfaces B: Biointerfaces, 2015, 125, 90-95.	5.0	37
93	Effects of graphene oxide on the development of offspring mice in lactation period. Biomaterials, 2015, 40, 23-31.	11.4	90
94	One-pot gradient solvothermal synthesis of the Ag/Au–Fe ₃ O ₄ composite nanoparticles and their applications. RSC Advances, 2014, 4, 56057-56062.	3.6	8
95	Icosahedral gold–platinum alloy nanocrystals in hollow silica: a highly active and stable catalyst for Ullmann reactions. Chemical Communications, 2014, 50, 539-541.	4.1	35
96	Fluorescence turn-off detection of hydrogen peroxide and glucose directly using carbon nanodots as probes. Analytical Methods, 2014, 6, 1922.	2.7	51
97	Sensitive and selective detection of Hg2+ and Cu2+ ions by fluorescent Ag nanoclusters synthesized via a hydrothermal method. Nanoscale, 2013, 5, 10022.	5.6	90
98	Synthesis of Black Magnetic Electrophoretic Particles for Magnetic-Electric Dual-Driven Electronic Paper. ACS Applied Materials & Interfaces, 2013, 5, 622-629.	8.0	21
99	One-pot gradient solvothermal synthesis of Au–Fe3O4 hybrid nanoparticles for magnetically recyclable catalytic applications. Journal of Materials Chemistry A, 2013, 1, 10513.	10.3	27
100	Confining alloy or core–shell Au–Pd bimetallic nanocrystals in silica nanorattles for enhanced catalytic performance. Journal of Materials Chemistry A, 2013, 1, 10382.	10.3	45
101	Uniform double-shelled silica hollow spheres: acid/base selective-etching synthesis and their drug delivery application. RSC Advances, 2013, 3, 5649.	3.6	28
102	Dispersion and stability of nanoparticles in electrophoretic displays. Journal of Materials Science: Materials in Electronics, 2013, 24, 382-391.	2.2	5
103	A simple and sensitive fluorescence biosensor for detection of organophosphorus pesticides using H2O2-sensitive quantum dots/bi-enzyme. Biosensors and Bioelectronics, 2013, 47, 402-407.	10.1	176
104	Luminescent Electrophoretic Particles via Miniemulsion Polymerization for Night-Vision Electrophoretic Displays. ACS Applied Materials & Interfaces, 2013, 5, 3638-3642.	8.0	21
105	An Overview on the Pharmacokinetics of Quantum Dots. Current Drug Metabolism, 2013, 14, 820-831.	1.2	5
106	Electrospun quantum dots/polymer composite porous fibers for turn-on fluorescent detection of lactate dehydrogenase. Journal of Materials Chemistry, 2012, 22, 18471.	6.7	59
107	Monodisperse Hollow Tricolor Pigment Particles for Electronic Paper. Nanoscale Research Letters, 2010, 5, 174-179.	5.7	35
108	Synthesis and Application of Carbon–Iron Oxide Microspheres' Black Pigments in Electrophoretic Displays. Nanoscale Research Letters, 2010, 5, 1664-1668.	5.7	21

#	Article	IF	CITATIONS
109	Pigment-based tricolor ink particles via mini-emulsion polymerization for chromatic electrophoretic displays. Journal of Materials Chemistry, 2010, 20, 8112.	6.7	21
110	Highâ€Density Magnetite Nanoparticles Located in Carbon Hollow Microspheres with Good Dispersibility and Durability: Their Oneâ€Pot Preparation and Magnetic Properties. European Journal of Inorganic Chemistry, 2009, 2009, 3003-3007.	2.0	18