Mario Ledda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2562099/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biological Response to Bioinspired Microporous 3D-Printed Scaffolds for Bone Tissue Engineering. International Journal of Molecular Sciences, 2022, 23, 5383.	1.8	6
2	Raman Mapping of Biological Systems Interacting with a Disordered Nanostructured Surface: A Simple and Powerful Approach to the Label-Free Analysis of Single DNA Bases. Micromachines, 2021, 12, 264.	1.4	4
3	Silver-coated silicon nanowire platform discriminates genomic DNA from normal and malignant human epithelial cells using label-free Raman spectroscopy. Materials Science and Engineering C, 2021, 122, 111951.	3.8	10
4	Biocompatibility assessment of sub-5 nm silica-coated superparamagnetic iron oxide nanoparticles in human stem cells and in mice for potential application in nanomedicine. Nanoscale, 2020, 12, 1759-1778.	2.8	36
5	Combination of cord bloodâ€derived human hepatic progenitors and hepatogenic factors strongly improves recovery after acute liver injury in mice through modulation of the Wnt/βâ€catenin signaling. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1031-1043.	1.3	1
6	Non-Ionizing Radiation for Cardiac Human Amniotic Mesenchymal Stromal Cell Commitment: A Physical Strategy in Regenerative Medicine. International Journal of Molecular Sciences, 2018, 19, 2324.	1.8	4
7	Array of disordered silicon nanowires coated by a gold film for combined NIR photothermal treatment of cancer cells and Raman monitoring of the process evolution. Nanotechnology, 2018, 29, 415102.	1.3	24
8	In vitro biocompatibility study of sub-5 nm silica-coated magnetic iron oxide fluorescent nanoparticles for potential biomedical application. Scientific Reports, 2017, 7, 46513.	1.6	39
9	Electromagnetic information transfer through aqueous system. Electromagnetic Biology and Medicine, 2017, 36, 289-294.	0.7	10
10	Placenta Derived Mesenchymal Stem Cells Hosted on RKKP Glass-Ceramic: A Tissue Engineering Strategy for Bone Regenerative Medicine Applications. BioMed Research International, 2016, 2016, 1-11.	0.9	10
11	Weak-field H3O+ion cyclotron resonance alters water refractive index. Electromagnetic Biology and Medicine, 2016, 36, 1-8.	0.7	14
12	Interdisciplinary approach to cell–biomaterial interactions: biocompatibility and cell friendly characteristics of RKKP glass–ceramic coatings on titanium. Biomedical Materials (Bristol), 2015, 10, 035005.	1.7	16
13	Lorentz force in water: evidence that hydronium cyclotron resonance enhances polymorphism. Electromagnetic Biology and Medicine, 2015, 34, 370-375.	0.7	19
14	The trail from quantum electro dynamics to informative medicine. Electromagnetic Biology and Medicine, 2015, 34, 147-150.	0.7	12
15	Nonpulsed Sinusoidal Electromagnetic Fields as a Noninvasive Strategy in Bone Repair: The Effect on Human Mesenchymal Stem Cell Osteogenic Differentiation. Tissue Engineering - Part C: Methods, 2015, 21, 207-217.	1.1	14
16	Bioelectromagnetic medicine: The role of resonance signaling. Electromagnetic Biology and Medicine, 2013, 32, 484-499.	0.7	52
17	Non Ionising Radiation as a Non Chemical Strategy in Regenerative Medicine: Ca2+-ICR "In Vitro―Effect on Neuronal Differentiation and Tumorigenicity Modulation in NT2 Cells. PLoS ONE, 2013, 8, e61535.	1.1	15
18	Nonionizing Radiation as a Noninvasive Strategy in Regenerative Medicine: The Effect of Ca ²⁺ -ICR on Mouse Skeletal Muscle Cell Growth and Differentiation. Tissue Engineering - Part A. 2012, 18, 2248-2258.	1.6	12

Mario Ledda

#	Article	IF	CITATIONS
19	Experimental Finding on the Electromagnetic Information Transfer of Specific Molecular Signals Mediated Through the Aqueous System on Two Human Cellular Models. Journal of Alternative and Complementary Medicine, 2012, 18, 258-261.	2.1	17
20	A Combined Synthetic-Fibrin Scaffold Supports Growth and Cardiomyogenic Commitment of Human Placental Derived Stem Cells. PLoS ONE, 2012, 7, e34284.	1.1	39
21	Highly electroconductive multiwalled carbon nanotubes as potentially useful tools for modulating calcium balancing in biological environments. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 299-307.	1.7	5
22	Differentiation of Human LAN-5 Neuroblastoma Cells Induced by Extremely Low Frequency Electronically Transmitted Retinoic Acid. Journal of Alternative and Complementary Medicine, 2011, 17, 701-704.	2.1	8
23	Cord Blood CD133 Cells Define an OV6-Positive Population That Can Be Differentiated In Vitro into Engraftable Bipotent Hepatic Progenitors. Stem Cells and Development, 2011, 20, 2009-2021.	1.1	7
24	New Perspectives of Bioelectromagnetics in Biology and in Medicine: DNA Spectra for Diagnostic Purposes. Journal of Physics: Conference Series, 2011, 329, 012011.	0.3	4
25	Calcium Ion Cyclotron Resonance (ICR), 7.0 Hz, 9.2 μT Magnetic Field Exposure Initiates Differentiatior Pituitary Corticotrope-Derived AtT20 D16V Cells. Electromagnetic Biology and Medicine, 2010, 29, 63-71.	of 0.7	11
26	Differentiation of human adult cardiac stem cells exposed to extremely low-frequency electromagnetic fields. Cardiovascular Research, 2009, 82, 411-420.	1.8	104
27	Cellular ELF Signals as a Possible Tool in Informative Medicine. Electromagnetic Biology and Medicine, 2009, 28, 71-79.	0.7	29
28	466 UMBELICAL CORD BLOOD CD133+ CELLS CAN BE DIFFERENTIATED IN VITRO INTO BIPOTENT HEPATIC PROGENITOR CELLS. Journal of Hepatology, 2008, 48, S177.	1.8	0
29	Ion Cyclotron Resonance as a Tool in Regenerative Medicine. Electromagnetic Biology and Medicine, 2008, 27, 127-133.	0.7	34
30	Calcium Ion Cyclotron Resonance (ICR) Transfers Information to Living Systems: Effects on Human Epithelial Cell Differentiation. Electromagnetic Biology and Medicine, 2008, 27, 230-240.	0.7	19
31	Extremely low frequency magnetic field induces differentiation of the human cardiac stem cells. Journal of Molecular and Cellular Cardiology, 2007, 42, S91.	0.9	0
32	Extremely low frequency electromagnetic field exposure promotes differentiation of pituitary corticotrope-derived AtT20 D16V cells. Bioelectromagnetics, 2006, 27, 641-651.	0.9	57
33	ELF Non Ionizing Radiation Changes the Distribution of the Inner Chemical Functional Groups in Human Epithelial Cell (HaCaT) Culture. Electromagnetic Biology and Medicine, 2006, 25, 281-289.	0.7	6
34	Extremely Low Frequency 7 Hz 100 µT Electromagnetic Radiation Promotes Differentiation in the Human Epithelial Cell Line HaCaT. Electromagnetic Biology and Medicine, 2006, 25, 269-280.	0.7	30
35	Exposure to 50 Hz electromagnetic radiation promote early maturation and differentiation in newborn rat cerebellar granule neurons. Journal of Cellular Physiology, 2005, 204, 532-538.	2.0	34
36	Effect of 3′UTR length on the translational regulation of 5′-terminal oligopyrimidine mRNAs. Gene, 2005, 344, 213-220.	1.0	19

#	Article	IF	CITATIONS
37	Low electromagnetic field (50 Hz) induces differentiation on primary human oral keratinocytes (HOK). Bioelectromagnetics, 2004, 25, 118-126.	0.9	42
38	Structure of human succinic semialdehyde dehydrogenase gene: identification of promoter region and alternatively processed isoforms. Molecular Genetics and Metabolism, 2002, 76, 348-362.	0.5	49