
Jian-Rong Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2562050/publications.pdf Version: 2024-02-01

INN-RONG SHI

#	Article	IF	CITATIONS
1	The first data release (DR1) of the LAMOST regular survey. Research in Astronomy and Astrophysics, 2015, 15, 1095-1124.	1.7	565
2	Data release of the LAMOST pilot survey. Research in Astronomy and Astrophysics, 2012, 12, 1243-1246.	1.7	189
3	Automatic determination of stellar atmospheric parameters and construction of stellar spectral templates of the Guoshoujing Telescope (LAMOST). Research in Astronomy and Astrophysics, 2011, 11, 924-946.	1.7	168
4	The LAMOST stellar parameter pipeline at Peking University – lsp3. Monthly Notices of the Royal Astronomical Society, 2015, 448, 822-854.	4.4	132
5	Abundance Estimates for 16 Elements in 6 Million Stars from LAMOST DR5 Low-Resolution Spectra. Astrophysical Journal, Supplement Series, 2019, 245, 34.	7.7	130
6	LAMOST OBSERVATIONS IN THE <i>KEPLER</i> FIELD. I. DATABASE OF LOW-RESOLUTION SPECTRA. Astrophysical Journal, Supplement Series, 2015, 220, 19.	7.7	129
7	Stellar Abundance and Galactic Chemical Evolution through LAMOST Spectroscopic Survey. Research in Astronomy and Astrophysics, 2006, 6, 265-280.	1.1	124
8	Abundances of Na, Mg and Al in nearby metal-poor stars. Astronomy and Astrophysics, 2004, 413, 1045-1063.	5.1	111
9	SYSTEMATIC NON-LTE STUDY OF THE â^22.6Ââ‰Â[Fe/H]Ââ‰Â0.2 F AND G DWARFS IN THE SOLAR NEIGHBORF ABUNDANCE PATTERNS FROM Li TO Eu*. Astrophysical Journal, 2016, 833, 225.	100 <u>0</u> . II.	110
10	Activity indicators and stellar parameters of the <i>Kepler</i> targets. Astronomy and Astrophysics, 2016, 594, A39.	5.1	96
11	Na, Mg and Al abundances as a population discriminant for nearby metal-poor stars. Astronomy and Astrophysics, 2006, 451, 1065-1079.	5.1	94
12	Non-LTE line formation for heavy elements in four very metal-poor stars. Astronomy and Astrophysics, 2008, 478, 529-541.	5.1	90
13	Observational evidence for enhanced magnetic activity of superflare stars. Nature Communications, 2016, 7, 11058.	12.8	70
14	The Ages and Masses of a Million Galactic-disk Main-sequence Turnoff and Subgiant Stars from the LAMOST Galactic Spectroscopic Surveys. Astrophysical Journal, Supplement Series, 2017, 232, 2.	7.7	62
15	LAMOST OBSERVATIONS IN THE KEPLER FIELD. ANALYSIS OF THE STELLAR PARAMETERS MEASURED WITH LASP BASED ON LOW-RESOLUTION SPECTRA*. Astrophysical Journal, Supplement Series, 2016, 225, 28.	7.7	57
16	LAMOST OBSERVATIONS IN THE KEPLER FIELD: SPECTRAL CLASSIFICATION WITH THE MKCLASS CODE. Astronomical Journal, 2016, 151, 13.	4.7	57
17	LAMOST Observations in the Kepler Field. II. Database of the Low-resolution Spectra from the Five-year Regular Survey*. Astrophysical Journal, Supplement Series, 2018, 238, 30.	7.7	53
18	Statistical equilibrium of silicon in the solar atmosphere. Astronomy and Astrophysics, 2008, 486, 303-310.	5.1	51

Jian-Rong Shi

#	Article	IF	CITATIONS
19	Lithium abundances in metal-poor stars. Astronomy and Astrophysics, 2007, 465, 587-591.	5.1	45
20	Statistical equilibrium of silicon in the atmospheres of metal-poor stars. Astronomy and Astrophysics, 2009, 503, 533-540.	5.1	43
21	Ages and masses of 0.64 million red giant branch stars from the LAMOST Galactic Spectroscopic Survey. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5315-5329.	4.4	43
22	Sodium abundances in nearby disk stars. Astronomy and Astrophysics, 2004, 423, 683-691.	5.1	42
23	The nature of the lithium enrichment in the most Li-rich giant star. Nature Astronomy, 2018, 2, 790-795.	10.1	42
24	Phase II of the LAMOST-Kepler/K2 Survey. I. Time Series of Medium-resolution Spectroscopic Observations. Astrophysical Journal, Supplement Series, 2020, 251, 15.	7.7	38
25	THE NEAREST HIGH-VELOCITY STARS REVEALED BY LAMOST DATA RELEASE 1. Astrophysical Journal Letters, 2014, 789, L2.	8.3	36
26	The Solar Twin Planet Search. Astronomy and Astrophysics, 2017, 597, A34.	5.1	36
27	Stellar Mass Distribution and Star Formation History of the Galactic Disk Revealed by Mono-age Stellar Populations from LAMOST. Astrophysical Journal, Supplement Series, 2018, 237, 33.	7.7	36
28	Lithium-rich Giants in LAMOST Survey. I. The Catalog. Astrophysical Journal, Supplement Series, 2019, 245, 33.	7.7	36
29	Beryllium abundances in metal-poor stars. Monthly Notices of the Royal Astronomical Society, 2009, 392, 205-215.	4.4	34
30	Enormous Li Enhancement Preceding Red Giant Phases in Low-mass Stars in the Milky Way Halo ^{â^—} . Astrophysical Journal Letters, 2018, 852, L31.	8.3	34
31	NON-LTE ANALYSIS OF NEUTRAL COPPER IN LATE-TYPE METAL-POOR STARS. Astrophysical Journal, 2015, 802, 36.	4.5	31
32	Most lithium-rich low-mass evolved stars revealed as red clump stars by asteroseismology and spectroscopy. Nature Astronomy, 2021, 5, 86-93.	10.1	31
33	Four-hundred Very Metal-poor Stars Studied with LAMOST and Subaru. II. Elemental Abundances. Astrophysical Journal, 2022, 931, 147.	4.5	28
34	Overview of the LAMOST-Kepler project. Research in Astronomy and Astrophysics, 2020, 20, 167.	1.7	26
35	Non-LTE analysis of copper abundances for the two distinct halo populations in the solar neighborhood. Astronomy and Astrophysics, 2016, 585, A102.	5.1	25
36	Magnetic Activities of M-type Stars Based on LAMOST DR5 and Kepler and K2 Missions. Astrophysical Journal, Supplement Series, 2019, 243, 28.	7.7	25

JIAN-RONG SHI

#	Article	IF	CITATIONS
37	Radial velocity measurements from LAMOST medium-resolution spectroscopic observations: a pointing towards the Kepler field. Research in Astronomy and Astrophysics, 2019, 19, 075.	1.7	25
38	STATISTICAL EQUILIBRIUM OF COPPER IN THE SOLAR ATMOSPHERE. Astrophysical Journal, 2014, 782, 80.	4.5	24
39	Overview of the LAMOST survey in the first decade. Innovation(China), 2022, 3, 100224.	9.1	24
40	Chemical and Kinematic Analysis of CN-strong Metal-poor Field Stars in LAMOST DR3. Astrophysical Journal, 2019, 871, 58.	4.5	23
41	Chemical and Kinematic Properties of the Galactic Disk from the LAMOST and Gaia Sample Stars. Astrophysical Journal, 2019, 880, 36.	4.5	22
42	NLTE ANALYSIS OF HIGH-RESOLUTION H-BAND SPECTRA. I. NEUTRAL SILICON*. Astrophysical Journal, 2016, 833, 137.	4.5	21
43	New Nearby Hypervelocity Stars and Their Spatial Distribution from Gaia DR2. Astrophysical Journal, Supplement Series, 2019, 244, 4.	7.7	20
44	Magnetic activity based on LAMOST medium-resolution spectra and the Kepler survey. Monthly Notices of the Royal Astronomical Society, 2020, 495, 1252-1270.	4.4	20
45	Broadening and Redward Asymmetry of Hα Line Profiles Observed by LAMOST during a Stellar Flare on an M-type Star. Astrophysical Journal, 2022, 928, 180.	4.5	20
46	High-resolution Spectroscopic Analysis of a Large Sample of Li-rich Giants Found By LAMOST. Astrophysical Journal, 2019, 877, 104.	4.5	19
47	NLTE Analysis of Copper Lines in Different Stellar Populations ^{â^—} . Astrophysical Journal, 2018, 862, 71.	4.5	18
48	Mapping the Galactic Disk with the LAMOST and Gaia Red Clump Sample. VII. The Stellar Disk Structure Revealed by the Mono-abundance Populations. Astrophysical Journal, 2021, 912, 106.	4.5	18
49	Double- and Triple-line Spectroscopic Candidates in the LAMOST Medium-Resolution Spectroscopic Survey. Astrophysical Journal, Supplement Series, 2021, 256, 31.	7.7	18
50	Exploring the spectral information content in the LAMOST medium-resolution survey (MRS). Research in Astronomy and Astrophysics, 2020, 20, 051.	1.7	18
51	ATOMIC DATA OF Cu I FOR THE INVESTIGATION OF ELEMENT ABUNDANCE. Astrophysical Journal, Supplement Series, 2014, 211, 30.	7.7	16
52	NLTE ANALYSIS OF HIGH-RESOLUTION H-BAND SPECTRA. II. NEUTRAL MAGNESIUM*. Astrophysical Journal, 2017, 835, 90.	4.5	16
53	LAMOST Observations in 15 K2 Campaigns. I. Low-resolution Spectra from LAMOST DR6. Astrophysical Journal, Supplement Series, 2020, 251, 27.	7.7	15
54	SILICON ABUNDANCES IN NEARBY STARS FROM THE SI I INFRARED LINES. Astrophysical Journal, 2012, 755, 36.	4.5	14

Jian-Rong Shi

#	Article	IF	CITATIONS
55	Chromospheric activity properties and search for subdwarfs and extreme subdwarfs based on LAMOST stellar spectral survey. New Astronomy, 2016, 44, 66-77.	1.8	14
56	On the Chemical and Kinematic Consistency between N-rich Metal-poor Field Stars and Enriched Populations in Globular Clusters. Astrophysical Journal, 2020, 891, 28.	4.5	14
57	Star Formation Timescales of the Halo Populations from Asteroseismology and Chemical Abundances*. Astrophysical Journal, 2021, 912, 72.	4.5	14
58	New Oe Stars in LAMOST DR5. Astrophysical Journal, 2018, 863, 70.	4.5	13
59	Call H&K emission distribution of â^¼ 120 000 F, G and K stars in LAMOST DR1. Research in Astronomy and Astrophysics, 2015, 15, 1282-1293.	1.7	12
60	Asteroseismology of the Double-mode High-amplitude δÂScuti Star VX Hydrae. Astrophysical Journal, 2018, 861, 96.	4.5	12
61	Statistical equilibrium of silicon in the atmospheres of nearby metal-poor stars. Astronomy and Astrophysics, 2011, 534, A103.	5.1	11
62	The Origin of High-velocity Stars from Gaia and LAMOST. Astrophysical Journal Letters, 2018, 869, L31.	8.3	11
63	Chromospheric Activity of M Stars Based on LAMOST Low- and Medium-resolution Spectral Surveys. Astrophysical Journal, Supplement Series, 2021, 253, 19.	7.7	11
64	The Lithium Abundances from the Large Sky Area Multi-object Fiber Spectroscopic Telescope Medium-resolution Survey. I. The Method. Astrophysical Journal, 2021, 914, 116.	4.5	11
65	Lithium Evolution of Giant Stars Observed by LAMOST and Kepler. Astrophysical Journal Letters, 2021, 919, L3.	8.3	11
66	Super lithium-rich K giant with low ¹² C to ¹³ C ratio. Astronomy and Astrophysics, 2018, 615, A74.	5.1	10
67	On the radial velocity calibrations in the LAMOST medium-resolution spectroscopic survey of nebulae. Research in Astronomy and Astrophysics, 2021, 21, 051.	1.7	9
68	Four-hundred Very Metal-poor Stars Studied with LAMOST and Subaru. I. Survey Design, Follow-up Program, and Binary Frequency. Astrophysical Journal, 2022, 931, 146.	4.5	9
69	60 Candidate High-velocity Stars Originating from the Sagittarius Dwarf Spheroidal Galaxy in Gaia EDR3. Astrophysical Journal Letters, 2022, 933, L13.	8.3	9
70	Possibility to Identify the Contributions from Collapsars, Supernovae, and Neutron Star Mergers from the Evolution of the r-process Mass Abundance Distribution. Astrophysical Journal, 2022, 933, 112.	4.5	9
71	Fe I/Fe II ionization equilibrium in cool stars: NLTE versus LTE. Proceedings of the International Astronomical Union, 2009, 5, 197-200.	0.0	8
72	Cataclysmic variables based on the stellar spectral survey LAMOST DR3. Research in Astronomy and Astrophysics, 2018, 18, 068.	1.7	8

JIAN-RONG SHI

#	Article	IF	CITATIONS
73	A Catalog of 323 Cataclysmic Variables from LAMOST DR6. Astrophysical Journal, Supplement Series, 2021, 257, 65.	7.7	7
74	Radio stars observed in the LAMOST spectral survey. Research in Astronomy and Astrophysics, 2017, 17, 105.	1.7	6
75	NLTE Analysis of Copper Abundances in the Galactic Bulge Stars. Astrophysical Journal, 2019, 875, 142.	4.5	6
76	A New Transition Wolf–Rayet WN/C Star in the Milky Way. Astrophysical Journal, 2020, 902, 62.	4.5	6
77	Two Substructures in the nearby Stellar Halo Found in Gaia and RAVE. Astrophysical Journal, 2020, 895, 23.	4.5	6
78	Stellar Atmospheric Parameters of M-type Stars from LAMOST DR8. Astrophysical Journal, Supplement Series, 2022, 260, 45.	7.7	6
79	A Long-period Pre-ELM System Discovered from the LAMOST Medium-resolution Survey. Astrophysical Journal, 2022, 933, 193.	4.5	6
80	The Odd Isotope Fractions of Barium in the Strongly r-process-enhanced (r-II) Stars*. Astrophysical Journal, 2018, 854, 131.	4.5	5
81	Keck/HIRES Spectroscopic Analysis of Barium Abundances. Astrophysical Journal, 2020, 896, 64.	4.5	5
82	LAMOST/HRS spectroscopic analysis of two new Li-rich giants. Research in Astronomy and Astrophysics, 2021, 21, 020.	1.7	5
83	Chromospheric Activity of Periodic Variable Stars Based on the LAMOST Low- and Medium-resolution Spectral Survey. Astrophysical Journal, Supplement Series, 2021, 253, 51.	7.7	5
84	Progress in nuclear astrophysics of east and southeast Asia. AAPPS Bulletin, 2021, 31, 1.	6.1	5
85	Existence of the Metal-rich Stellar Halo and High-velocity Thick Disk in the Galaxy. Astrophysical Journal, 2020, 903, 131.	4.5	5
86	Non-LTE Analyses of High-resolution H-band Spectra. III. Neutral and Singly Ionized Calcium. Astrophysical Journal, 2019, 881, 77.	4.5	4
87	Searching for r-process-enhanced stars in the LAMOST survey I: the method. Research in Astronomy and Astrophysics, 2021, 21, 036.	1.7	4
88	LAMOST medium-resolution spectral survey of Galactic nebulae (LAMOST-MRS-N): subtraction of geocoronal Hα emission. Research in Astronomy and Astrophysics, 2021, 21, 280.	1.7	4
89	Li-rich Giants in LAMOST Survey. III. The Statistical Analysis of Li-rich Giants. Astrophysical Journal, 2022, 931, 136.	4.5	4
90	Spectroscopic analysis of nearby lower-main-sequence stars. Monthly Notices of the Royal Astronomical Society, 2009, 399, 1264-1274.	4.4	3

JIAN-RONG SHI

#	Article	IF	CITATIONS
91	Spectral identification of the u-band variable sources in two LAMOST fields. Astrophysics and Space Science, 2016, 361, 1.	1.4	3
92	Discovery of Nine Super Li-rich Unevolved Stars from the LAMOST Survey. Astrophysical Journal Letters, 2022, 929, L14.	8.3	3
93	Element Abundance Analysis of the Metal-rich Stellar Halo and High-velocity Thick Disk in the Galaxy. Astrophysical Journal, 2021, 915, 9.	4.5	2
94	The Milky Way Revealed by Variable Stars. I. Sample Selection of RR Lyrae Stars and Evidence for Merger History. Astrophysical Journal, Supplement Series, 2022, 258, 20.	7.7	2
95	NLTE analysis of high-resolution H-band spectra IV: neutral copper. Research in Astronomy and Astrophysics, 2020, 20, 131.	1.7	1
96	A systematic study of NLTE abundances of nearby stars. Proceedings of the International Astronomical Union, 2013, 9, 400-400.	0.0	0
97	Statistical equilibrium of silicon in the atmospheres of cool stars. Proceedings of the International Astronomical Union, 2013, 9, 437-437.	0.0	0
98	Lithium-rich very metal-poor stars discovered with LAMOST and Subaru. AIP Conference Proceedings, 2018, , .	0.4	0
99	Search for the metal-weak thick disk from the LAMOST DR5. Research in Astronomy and Astrophysics, 0, , .	1.7	0
100	Chemical abundances of three new Ba stars from the Keck/HIRES spectra. Research in Astronomy and Astrophysics, 2021, 21, 278.	1.7	0
101	Two new r-process-enhanced stars with [Fe/H] > â^'0.6 dex from the LAMOST-MRS survey. Research in Astronomy and Astrophysics. O	1.7	0