
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2561890/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Characterization of Novel x-Type HMW Glutenin Subunit 1B × 6.5 in Wheat. Plants, 2021, 10, 2108.	3.5	0
2	MicroRNA-Based and Proteomics Fingerprinting of Avena sativa L. Genotypes. , 2021, 11, .		0
3	Detection of Celiac Active Polypeptides in Wheat, Oat and Buckwheat Using Immunochemical Methods. , 2021, 11, .		0
4	Genetic Diversity of Oat Genotypes Using SCoT Markers. , 2021, 11, .		1
5	Proteomic and Genetic Approach for Lunasin Peptide and Gene Presence Detection in Various Plants. , 2021, 11, .		0
6	Genetic diversity and relationship of Tunisian castor (Ricinus communis L.) genotypes revealed by SSR markers. Genetika, 2020, 52, 765-776.	0.4	0
7	CHARACTERISTICS OF CEREALS, PSEUDOCEREALS AND LEGUMES FOR THEIR COELIAC ACTIVE POLYPEPTIDES. Journal of Microbiology, Biotechnology and Food Sciences, 2019, 9, 390-395.	0.8	1
8	Genetic diversity in Tunisian castor genotypes (Ricinus communis L.) detected using RAPD markers. Potravinarstvo, 2019, 13, 294-300.	0.6	4
9	Determination of HMW – GS in wheat using SDS – PAGE and Lab-on-chip methods. Potravinarstvo, 2019, 13, 477-481.	0.6	1
10	Electrophoretic profiles of storage proteins in selected maize (Zea mays L.) genotypes. Journal of Central European Agriculture, 2019, 20, 911-918.	0.6	1
11	Comparison of selected wheat, oat and buckwheat genotypes on proteomic level. Journal of Central European Agriculture, 2019, 20, 891-899.	0.6	1
12	Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated castor (Ricinus communis L.) genotypes. Genetika, 2019, 51, 137-146.	0.4	5
13	PROTEIN PROFILES OF CEREALS AND PSEUDOCEREALS DETERMINED BY TWO-DIMENSIONAL GEL ELECTROPHORESIS. Journal of Microbiology, Biotechnology and Food Sciences, 2019, 9, 359-365.	0.8	1
14	Characterization of Tunisian castor bean genotypes using SDS-PAGE of total seed storage proteins. Potravinarstvo, 2018, 12, 701-706.	0.6	1
15	Comparison of American and European maize (Zea mays L.) protein profiles. Journal of Central European Agriculture, 2018, 19, 453-465.	0.6	3
16	Comparison of nutritional and technological quality of winter wheat (Triticum aestivum L.) and hybrid wheat (Triticum aestivum L. x Triticum spelta L.). Journal of Central European Agriculture, 2018, 19, 437-452.	0.6	3
17	Genetic diversity and population structure in tunisian castor genotypes (Ricinus communis L.) Detected using scot markers. Potravinarstvo, 2018, 12, .	0.6	4
18	Study of polymorphism of maize using dna and protein markers. Potravinarstvo, 2018, 12, .	0.6	1

#	Article	IF	CITATIONS
19	Molecular analysis of buckwheat using gene specific markers. Potravinarstvo, 2018, 12, 546-552.	0.6	2
20	Chitinase Activities in Wheat and Its Relative Species. Agriculture, 2017, 63, 14-22.	0.4	2
21	POTENTIAL OF SELECTED SSR MARKERS FOR IDENTIFICATION OF MALTING BARLEY GENOTYPES. Journal of Microbiology, Biotechnology and Food Sciences, 2017, 6, 1276-1279.	0.8	3
22	Detection genetic variability of secale cereale L. by scot markers. Potravinarstvo, 2017, 11, .	0.6	7
23	GENETIC VARIATION OF MAIZE GENOTYPES (ZEA MAYS L.) DETECTED USING SDS-PAGE. Journal of Microbiology, Biotechnology and Food Sciences, 2017, 6, 1086-1089.	0.8	Ο
24	Genetic variation of european maize genotypes (Zea mays L.) Detected using ssr markers. Potravinarstvo, 2017, 11, 126-131.	0.6	4
25	GENETIC DIVERSITY ANALYSIS OF MAIZE (ZEA MAYS L.) USING SCoT MARKERS. Journal of Microbiology, Biotechnology and Food Sciences, 2017, 6, 1170-1173.	0.8	10
26	Molecular variability of oat based on gene specific markers. Potravinarstvo, 2017, 11, .	0.6	2
27	Perception of biotech trees by Slovak university students – a comparative survey. Nova Biotechnologica Et Chimica, 2017, 16, 12-19.	0.1	Ο
28	THE FAMILY OF CHITINASES IN COTTON G. raimondii. Journal of Microbiology, Biotechnology and Food Sciences, 2017, 6, 1284-1289.	0.8	2
29	GENETIC DIVERSITY OF WINTER WHEAT (Triticum aestivum L.). Journal of Microbiology, Biotechnology and Food Sciences, 2017, 6, 1233-1236.	0.8	Ο
30	Beta-1,3-Glucanase Activities in Wheat and Relative Species. Nova Biotechnologica Et Chimica, 2016, 15, 122-132.	0.1	5
31	Agrochemicals affect the antioxidative defense potential of cotton plants. Journal of Microbiology, Biotechnology and Food Sciences, 2016, 05, 505-508.	0.8	2
32	Genetic variation and relationships of old maize genotypes (Zea mays l.) detected using SDS-page. Potravinarstvo, 2016, 10, .	0.6	5
33	Genetic diversity of European cultivars of common wheat (Triticum aestivum L.) based on RAPD and protein markers. Journal of Central European Agriculture, 2016, 17, 957-969.	0.6	5
34	Polymorphism of proteins in selected slovak winter wheat genotypes using SDS-PAGE. Journal of Central European Agriculture, 2016, 17, 970-985.	0.6	7
35	RAPD analysis of the genetic polymorphism in european wheat genotypes. Potravinarstvo, 2016, 10, .	0.6	4
36	Evaluation of molecular diversity of central European maize cultivars. Emirates Journal of Food and Agriculture, 2016, 28, 93.	1.0	4

#	Article	IF	CITATIONS
37	Lunasin detection in coloured wheat genotype. Potravinarstvo, 2016, 10, 152-156.	0.6	Ο
38	Molecular characterization of rye cultivars. Potravinarstvo, 2016, 10, .	0.6	4
39	Assessment of rapd polymorphism in ricin genotypes. Journal of Microbiology, Biotechnology and Food Sciences, 2016, 05, 386-388.	0.8	1
40	Application of rye SSR markers for detection of genetic diversity in triticale. Journal of Microbiology, Biotechnology and Food Sciences, 2016, 05, 623-626.	0.8	2
41	Start codon targeted (scot) polymorphism reveals genetic diversity in european old maize (zea mays l.) Genotypes. Potravinarstvo, 2016, 10, .	0.6	18
42	Comparison of 2-de proteome maps of wheat, rye and amaranth. Journal of Microbiology, Biotechnology and Food Sciences, 2015, 04, 7-10.	0.8	1
43	Application of wheat SSR markers for detection of genetic diversity in triticale (x Triticosecale witt.). Genetika, 2015, 47, 983-992.	0.4	1
44	Genetic diversity of glu-1 in European wheat genetic resources and varieties. Journal of Microbiology, Biotechnology and Food Sciences, 2015, 04, 23-25.	0.8	5
45	Protein extraction of maize (Zea mays) for proteomic 2-de analysis. Journal of Microbiology, Biotechnology and Food Sciences, 2015, 04, 263-265.	0.8	Ο
46	STUDY OF DNA POLYMORPHISM OF THE CASTOR NEW LINES BASED ON RAPD MARKERS. Journal of Microbiology, Biotechnology and Food Sciences, 2015, 4, 125-127.	0.8	3
47	Identification of technologically important genes and their products in the collection of bread wheat genotypes. Journal of Microbiology, Biotechnology and Food Sciences, 2015, 04, 26-29.	0.8	4
48	The differences between the old and new barley varieties on the basis of hordein polymorphism with respect to qualitative parameters. Journal of Microbiology, Biotechnology and Food Sciences, 2015, 04, 108-110.	0.8	1
49	Assessment of rapd polymorphism in rye (Secale cereale L.) genotypes. Journal of Microbiology, Biotechnology and Food Sciences, 2015, 04, 94-97.	0.8	4
50	Bioinformatic approach in the identification of arabidopsis gene homologous in amaranthus. Potravinarstvo, 2015, 9, .	0.6	1
51	Identification and differentiation of Ricinus communis L. using SSR markers. Potravinarstvo, 2015, 9, 556-561.	0.6	10
52	Molecular marker-based characterization of a set of wheat genotypes adapted to Central Europe. Cereal Research Communications, 2014, 42, 189-198.	1.6	4
53	Detection and characterisation of Plum pox virus (PPV) isolates from Eastern Slovakia revealed the presence of three main viral strains Potravinarstvo, 2014, 8, 1-7.	0.6	0
54	Protein maps of buckwheat and amaranth. Current Opinion in Biotechnology, 2013, 24, S133.	6.6	0

#	Article	IF	CITATIONS
55	Detection of genetic relationships among spring and winter triticale (× Triticosecale Witt.) and rye cultivars (Secale cereale L.) by using retrotransposon-based markers. Czech Journal of Genetics and Plant Breeding, 2013, 49, 171-174.	0.8	8
56	Identification of Triticum aestivum L., Triticum spelta L. and Triticum durum DESF. genotypes on the HMW-GS base. Plant, Soil and Environment, 2010, 56, 82-86.	2.2	4
57	Stress-induced expression of cucumber chitinase and Nicotiana plumbaginifolia β-1,3-glucanase genes in transgenic potato plants. Acta Physiologiae Plantarum, 2007, 29, 133-141.	2.1	20
58	Variation in HMW glutenin subunits of different species of wheat. Plant, Soil and Environment, 2002, 48, 15-19.	2.2	4
59	Effect of Structural Variability of the Ceramide Part on the Saccharide-Ceramide Linkage in Model Glycolipids Studied by Molecular Mechanics and Molecular Dynamics Methods. Collection of Czechoslovak Chemical Communications, 1996, 61, 1405-1431.	1.0	0
60	Genetic divergence in Tunisian castor bean genotypes based on trap markers. Potravinarstvo, 0, 14, 510-518.	0.6	2