Peter J Catto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2561758/publications.pdf

Version: 2024-02-01

933447 677142 26 460 10 22 citations h-index g-index papers 26 26 26 301 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Drift kinetic theory of alpha transport by tokamak perturbations. Journal of Plasma Physics, 2021, 87, .	2.1	6
2	Reimagining full wave rf quasilinear theory in a tokamak. Journal of Plasma Physics, 2021, 87, .	2.1	4
3	Lower hybrid current drive in a tokamak for correlated passes through resonance. Journal of Plasma Physics, 2021, 87, .	2.1	4
4	Collisional broadening of nonlinear resonant wave–particle interactions. Journal of Plasma Physics, 2021, 87, .	2.1	3
5	Electromagnetic zonal flow residual responses – Corrigendum. Journal of Plasma Physics, 2020, 86, .	2.1	O
6	Collisional effects on resonant particles in quasilinear theory. Journal of Plasma Physics, 2020, 86, .	2.1	10
7	Bootstrap current and parallel ion velocity in imperfectly optimized stellarators. Journal of Plasma Physics, 2020, 86, .	2.1	2
8	Bootstrap current and parallel ion velocity in imperfectly optimized stellarators Corrigendum. Journal of Plasma Physics, 2020, 86, .	2.1	0
9	Collisional alpha transport in a weakly non-quasisymmetric stellarator magnetic field – CORRIGENDUM. Journal of Plasma Physics, 2019, 85, .	2.1	O
10	Collisional alpha transport in a weakly non-quasisymmetric stellarator magnetic field. Journal of Plasma Physics, 2019, 85, .	2.1	2
11	Collisional alpha transport in a weakly rippled magnetic field. Journal of Plasma Physics, 2019, 85, .	2.1	4
12	Ripple modifications to alpha transport inÂtokamaks. Journal of Plasma Physics, 2018, 84, .	2.1	8
13	Symmetric spectrum current drive due to finite radial drift effects. Journal of Plasma Physics, 2018, 84, .	2.1	1
14	A quasilinear operator retaining magnetic drift effects in tokamak geometry. Journal of Plasma Physics, 2017, 83, .	2.1	10
15	Omnigenity as generalized quasisymmetry. Physics of Plasmas, 2012, 19, .	1.9	50
16	Variational calculation of neoclassical ion heat flux and poloidal flow in the banana regime for axisymmetric magnetic geometry. Plasma Physics and Controlled Fusion, 2012, 54, 085011.	2.1	6
17	Neoclassical ion heat flux and poloidal flow in a tokamak pedestal. Plasma Physics and Controlled Fusion, 2010, 52, 055004.	2.1	27
18	Neoclassical plateau regime transport in a tokamak pedestal. Plasma Physics and Controlled Fusion, 2010, 52, 075016.	2.1	19

PETER J CATTO

#	Article	IF	CITATION
19	Transport of momentum in full f gyrokinetics. Physics of Plasmas, 2010, 17, .	1.9	39
20	Arbitrary poloidal gyroradius effects in tokamak pedestals and transport barriers. Plasma Physics and Controlled Fusion, 2008, 50, 085010.	2.1	32
21	Limitations of gyrokinetics on transport time scales. Plasma Physics and Controlled Fusion, 2008, 50, 065014.	2.1	92
22	Collisional damping for ion temperature gradient mode driven zonal flow. Physics of Plasmas, 2007, 14, 032302.	1.9	36
23	Drift kinetic equation exact through second order in gyroradius expansion. Physics of Plasmas, 2005, 12, 012105.	1.9	28
24	Effect of the inductive electric field on ion flow in tokamaks. Physics of Plasmas, 2001, 8, 3334-3341.	1.9	4
25	A quasilinear description for fastâ€wave minority heating permitting offâ€magnetic axis heating in a tokamak. Physics of Fluids B, 1992, 4, 187-199.	1.7	24
26	Bumpy torus transport in the low collision frequency limit. Physics of Fluids, 1981, 24, 290.	1.4	49