List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2561726/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Experimental and quantum chemical studies of carboxylates as corrosion inhibitors for AM50 alloy in pH neutral NaCl solution. Journal of Magnesium and Alloys, 2022, 10, 555-568.                                                 | 5.5 | 16        |
| 2  | Biodegradation behaviour of Fe-based alloys in Hanks' Balanced Salt Solutions: Part II. The evolution of local pH and dissolved oxygen concentration at metal interface. Bioactive Materials, 2022, 7, 412-425.                   | 8.6 | 14        |
| 3  | Biodegradation behaviour of Fe-based alloys in Hanks' Balanced Salt Solutions: Part I. material characterisation and corrosion testing. Bioactive Materials, 2022, 7, 426-440.                                                    | 8.6 | 28        |
| 4  | Enhancement of discharge performance for aqueous Mg-air batteries in<br>2,6-dihydroxybenzoate-containing electrolyte. Chemical Engineering Journal, 2022, 429, 132369.                                                            | 6.6 | 22        |
| 5  | The effect of carboxylate compounds on Volta potential and corrosion inhibition of Mg containing different levels of iron. Corrosion Science, 2022, 194, 109937.                                                                  | 3.0 | 25        |
| 6  | Revealing physical interpretation of time constants in electrochemical impedance spectra of Mg via<br>Tribo-EIS measurements. Electrochimica Acta, 2022, 404, 139582.                                                             | 2.6 | 23        |
| 7  | Local pH and oxygen concentration at the interface of Zn alloys in Tris-HCl or HEPES buffered Hanks'<br>balanced salt solution. Corrosion Science, 2022, 197, 110061.                                                             | 3.0 | 12        |
| 8  | Low interfacial pH discloses the favorable biodegradability of several Mg alloys. Corrosion Science, 2022, 197, 110059.                                                                                                           | 3.0 | 9         |
| 9  | In situ formation of LDH-based nanocontainers on the surface of AZ91 magnesium alloy and detailed investigation of their crystal structure. Journal of Magnesium and Alloys, 2022, 10, 1268-1285.                                 | 5.5 | 21        |
| 10 | Exploring the effect of sodium salt of Ethylenediaminetetraacetic acid as an electrolyte additive on electrochemical behavior of a commercially pure Mg in primary Mg-air batteries. Journal of Power Sources, 2022, 527, 231176. | 4.0 | 13        |
| 11 | Exploring the corrosion inhibition mechanism of 8-hydroxyquinoline for a PEO-coated magnesium alloy. Corrosion Science, 2022, 203, 110344.                                                                                        | 3.0 | 24        |
| 12 | CORDATA: an open data management web application to select corrosion inhibitors. Npj Materials<br>Degradation, 2022, 6, .                                                                                                         | 2.6 | 12        |
| 13 | A mathematical model describing the surface evolution of Mg anode during discharge of aqueous<br>Mg-air battery. Journal of Power Sources, 2022, 542, 231745.                                                                     | 4.0 | 6         |
| 14 | Rational Design of Effective Mg Degradation Modulators. Corrosion, 2021, 77, 204-208.                                                                                                                                             | 0.5 | 9         |
| 15 | Approaching "stainless magnesium―by Ca micro-alloying. Materials Horizons, 2021, 8, 589-596.                                                                                                                                      | 6.4 | 76        |
| 16 | Indium chloride as an electrolyte additive for primary aqueous Mg batteries. Electrochimica Acta,<br>2021, 373, 137916.                                                                                                           | 2.6 | 26        |
| 17 | Degradation of Titanium Sintered with Magnesium: Effect of Hydrogen Uptake. Metals, 2021, 11, 527.                                                                                                                                | 1.0 | 2         |
| 18 | Flash-PEO as an alternative to chromate conversion coatings for corrosion protection of Mg alloy.<br>Corrosion Science, 2021, 180, 109189.                                                                                        | 3.0 | 74        |

SVIATLANA LAMAKA

| #  | Article                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Control of the Mg alloy biodegradation via PEO and polymer-containing coatings. Corrosion Science, 2021, 182, 109254.                                                              | 3.0 | 46        |
| 20 | Mg Biodegradation Mechanism Deduced from the Local Surface Environment under Simulated Physiological Conditions. Advanced Healthcare Materials, 2021, 10, e2100053.                | 3.9 | 17        |
| 21 | Insight into physical interpretation of high frequency time constant in electrochemical impedance spectra of Mg. Corrosion Science, 2021, 187, 109501.                             | 3.0 | 64        |
| 22 | Corrosion behavior of Mg wires for ureteral stent in artificial urine solution. Corrosion Science, 2021, 189, 109567.                                                              | 3.0 | 27        |
| 23 | Computational modeling of degradation process of biodegradable magnesium biomaterials. Corrosion Science, 2021, 190, 109674.                                                       | 3.0 | 24        |
| 24 | Adverse effect of 2,5PDC corrosion inhibitor on PEO coated magnesium. Corrosion Science, 2021, 192, 109830.                                                                        | 3.0 | 21        |
| 25 | High-energy and durable aqueous magnesium batteries: Recent advances and perspectives. Energy Storage Materials, 2021, 43, 238-247.                                                | 9.5 | 54        |
| 26 | Spatially resolved electrochemical tools: micropotentiometry and scanning vibrating electrode technique to detail localized corrosion problems in coated parts. , 2021, , 437-468. |     | 0         |
| 27 | Exploring structure-property relationships in magnesium dissolution modulators. Npj Materials<br>Degradation, 2021, 5, .                                                           | 2.6 | 17        |
| 28 | Predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models. Npj Computational Materials, 2021, 7, .                           | 3.5 | 17        |
| 29 | Localized Corrosion Degradation of Bioresorbable Mg Alloys Promising for Medicine. , 2021, 6, .                                                                                    |     | Ο         |
| 30 | In silico screening of modulators of magnesium dissolution. Corrosion Science, 2020, 163, 108245.                                                                                  | 3.0 | 38        |
| 31 | Active protection of Mg alloy by composite PEO coating loaded with corrosion inhibitors. Applied Surface Science, 2020, 504, 144462.                                               | 3.1 | 68        |
| 32 | Clarifying the influence of albumin on the initial stages of magnesium corrosion in Hank's balanced salt solution. Journal of Magnesium and Alloys, 2020, , .                      | 5.5 | 36        |
| 33 | Synergistic Mixture of Electrolyte Additives: A Route to a High-Efficiency Mg–Air Battery. Journal of<br>Physical Chemistry Letters, 2020, 11, 8790-8798.                          | 2.1 | 29        |
| 34 | Corrosion and discharge properties of Ca/Ge micro-alloyed Mg anodes for primary aqueous Mg<br>batteries. Corrosion Science, 2020, 177, 108958.                                     | 3.0 | 53        |
| 35 | High rate oxygen reduction reaction during corrosion of ultra-high-purity magnesium. Npj Materials<br>Degradation, 2020, 4,                                                        | 2.6 | 30        |
| 36 | Selecting medium for corrosion testing of bioabsorbable magnesium and other metals – A critical review. Corrosion Science, 2020, 171, 108722.                                      | 3.0 | 152       |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Tailoring the Mg-air primary battery performance using strong complexing agents as electrolyte additives. Journal of Power Sources, 2020, 453, 227880.                                                           | 4.0 | 36        |
| 38 | Ca/In micro alloying as a novel strategy to simultaneously enhance power and energy density of primary Mg-air batteries from anode aspect. Journal of Power Sources, 2020, 472, 228528.                          | 4.0 | 76        |
| 39 | Electrochemical behaviour of the MA8 Mg alloy in minimum essential medium. Corrosion Science, 2020, 168, 108552.                                                                                                 | 3.0 | 30        |
| 40 | Thixomolded AZ91D and MRI153M magnesium alloys and their enhanced corrosion resistance. Materials and Corrosion - Werkstoffe Und Korrosion, 2020, 71, 339-351.                                                   | 0.8 | 4         |
| 41 | In situ surface film evolution during Mg aqueous corrosion in presence of selected carboxylates.<br>Corrosion Science, 2020, 171, 108484.                                                                        | 3.0 | 32        |
| 42 | Localized currents and pH distribution studied during corrosion of MA8 Mg alloy in the cell culture medium. Corrosion Science, 2020, 170, 108689.                                                                | 3.0 | 47        |
| 43 | ATR-FTIR in Kretschmann configuration integrated with electrochemical cell as in situ interfacial sensitive tool to study corrosion inhibitors for magnesium substrates. Electrochimica Acta, 2020, 345, 136166. | 2.6 | 37        |
| 44 | Tailoring electrolyte additives for controlled Mg-Ca anode activity in aqueous Mg-air batteries.<br>Journal of Power Sources, 2020, 460, 228106.                                                                 | 4.0 | 37        |
| 45 | Use of synergistic mixture of chelating agents for in situ LDH growth on the surface of PEO-treated AZ91. Scientific Reports, 2020, 10, 8645.                                                                    | 1.6 | 28        |
| 46 | (Invited) Selective Response of Magnesium Corrosion Inhibitors Incorporated in PEO Coatings. ECS<br>Meeting Abstracts, 2020, MA2020-02, 1295-1295.                                                               | 0.0 | 0         |
| 47 | Clarifying the decisive factors for utilization efficiency of Mg anodes for primary aqueous batteries.<br>Journal of Power Sources, 2019, 441, 227201.                                                           | 4.0 | 86        |
| 48 | Influence of inhibitor adsorption on readings of microelectrode during SVET measurements.<br>Electrochimica Acta, 2019, 322, 134761.                                                                             | 2.6 | 14        |
| 49 | Galvanic corrosion of Ti6Al4V -AA2024 joints in aircraft environment: Modelling and experimental validation. Corrosion Science, 2019, 157, 70-78.                                                                | 3.0 | 51        |
| 50 | Effect of unequal levels of deformation and fragmentation on the electrochemical response of friction stir welded AA2024-T3 alloy. Electrochimica Acta, 2019, 313, 271-281.                                      | 2.6 | 26        |
| 51 | Corrosion protection of steel cutâ€edges by hotâ€dip galvanized Al(Zn,Mg) coatings in 1 wt% NaCl: Part I.<br>Experimental study. Materials and Corrosion - Werkstoffe Und Korrosion, 2019, 70, 768-779.          | 0.8 | 7         |
| 52 | Mutual interplay of ZnO micro- and nanowires and methylene blue during cyclic photocatalysis process. Journal of Environmental Chemical Engineering, 2019, 7, 103016.                                            | 3.3 | 92        |
| 53 | Revealing the impact of second phase morphology on discharge properties of binary Mg-Ca anodes for primary Mg-air batteries. Corrosion Science, 2019, 153, 225-235.                                              | 3.0 | 67        |
| 54 | The effect of small-molecule bio-relevant organic components at low concentration on the corrosion of commercially pure Mg and Mg-0.8Ca alloy: An overall perspective. Corrosion Science, 2019, 153, 258-271.    | 3.0 | 76        |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Data Science Based Mg Corrosion Engineering. Frontiers in Materials, 2019, 6, .                                                                                                                             | 1.2 | 34        |
| 56 | Corrosion protection of steel cutâ€edges by hotâ€dip galvanized Al(Zn,Mg) coatings in 1 wt% NaCl: Part II.<br>Numerical simulations. Materials and Corrosion - Werkstoffe Und Korrosion, 2019, 70, 780-792. | 0.8 | 15        |
| 57 | Evaporation of Electrolyte during SVET Measurements: The Scale of the Problem and the Solutions.<br>Electroanalysis, 2019, 31, 2290-2298.                                                                   | 1.5 | 4         |
| 58 | The role of individual components of simulated body fluid on the corrosion behavior of commercially pure Mg. Corrosion Science, 2019, 147, 81-93.                                                           | 3.0 | 97        |
| 59 | CHAPTER 12. Aqueous Mg Batteries. RSC Energy and Environment Series, 2019, , 275-308.                                                                                                                       | 0.2 | 6         |
| 60 | Towards Active Corrosion Protection of Mg Alloys Using Corrosion Inhibition Approaches. Minerals,<br>Metals and Materials Series, 2018, , 19-20.                                                            | 0.3 | 0         |
| 61 | Chelating agent-assisted in situ LDH growth on the surface of magnesium alloy. Scientific Reports, 2018, 8, 16409.                                                                                          | 1.6 | 46        |
| 62 | The Reduction of Dissolved Oxygen During Magnesium Corrosion. ChemistryOpen, 2018, 7, 664-668.                                                                                                              | 0.9 | 66        |
| 63 | Nanoporous magnesium. Nano Research, 2018, 11, 6428-6435.                                                                                                                                                   | 5.8 | 46        |
| 64 | Performance boost for primary magnesium cells using iron complexing agents as electrolyte additives. Scientific Reports, 2018, 8, 7578.                                                                     | 1.6 | 45        |
| 65 | Validating the early corrosion sensing functionality in poly (ether imide) coatings for enhanced protection of magnesium alloy AZ31. Corrosion Science, 2018, 140, 307-320.                                 | 3.0 | 36        |
| 66 | Local pH and Its Evolution Near Mg Alloy Surfaces Exposed to Simulated Body Fluids. Advanced<br>Materials Interfaces, 2018, 5, 1800169.                                                                     | 1.9 | 63        |
| 67 | Corrosion inhibition of pure Mg containing a high level of iron impurity in pH neutral NaCl solution.<br>Corrosion Science, 2018, 142, 222-237.                                                             | 3.0 | 72        |
| 68 | Enhanced Wear Performance of Hybrid Epoxy-Ceramic Coatings on Magnesium Substrates. ACS Applied<br>Materials & Interfaces, 2018, 10, 30741-30751.                                                           | 4.0 | 21        |
| 69 | Mg-Ca binary alloys as anodes for primary Mg-air batteries. Journal of Power Sources, 2018, 396, 109-118.                                                                                                   | 4.0 | 193       |
| 70 | Corrosion protection properties of inhibitor containing hybrid PEO-epoxy coating on magnesium.<br>Corrosion Science, 2018, 140, 99-110.                                                                     | 3.0 | 103       |
| 71 | Kelvin Microprobe Analytics on Iron-Enriched Corroded Magnesium Surface. Corrosion, 2017, 73, 583-595.                                                                                                      | 0.5 | 13        |
| 72 | Hierarchically organized Li–Al-LDH nano-flakes: a low-temperature approach to seal porous anodic oxide on aluminum alloys. RSC Advances, 2017, 7, 35357-35367.                                              | 1.7 | 34        |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Comprehensive screening of Mg corrosion inhibitors. Corrosion Science, 2017, 128, 224-240.                                                                                                                                  | 3.0 | 206       |
| 74 | Role of steel and zinc coating thickness in cut edge corrosion of coil coated materials in atmospheric weathering conditions; Part 1: Laboratory study. Progress in Organic Coatings, 2016, 99, 356-364.                    | 1.9 | 22        |
| 75 | Corrosion inhibition synergies on a model Al-Cu-Mg sample studied by localized scanning electrochemical techniques. Corrosion Science, 2016, 112, 408-417.                                                                  | 3.0 | 61        |
| 76 | Active corrosion protection coating for a ZE41 magnesium alloy created by combining PEO and sol–gel techniques. RSC Advances, 2016, 6, 12553-12560.                                                                         | 1.7 | 84        |
| 77 | A new concept for corrosion inhibition of magnesium: Suppression of iron re-deposition.<br>Electrochemistry Communications, 2016, 62, 5-8.                                                                                  | 2.3 | 100       |
| 78 | Application of scanning electrode techniques for the evaluation of iron–zinc corrosion in nearly neutral chloride solutions. Corrosion Science, 2016, 104, 123-131.                                                         | 3.0 | 24        |
| 79 | Smart composite coatings for corrosion protection of aluminium alloys in aerospace applications. , 2016, , 85-121.                                                                                                          |     | 39        |
| 80 | Simulation of the role of vibration on Scanning Vibrating Electrode Technique measurements close to a disc in plane. Electrochimica Acta, 2016, 203, 379-387.                                                               | 2.6 | 29        |
| 81 | Comparison of the synergistic effects of inhibitor mixtures tailored for enhanced corrosion protection of bare and coated AA2024-T3. Surface and Coatings Technology, 2016, 303, 342-351.                                   | 2.2 | 76        |
| 82 | The effect of iron re-deposition on the corrosion of impurity-containing magnesium. Physical Chemistry Chemical Physics, 2016, 18, 1279-1291.                                                                               | 1.3 | 140       |
| 83 | Quasi-simultaneous Mapping of Local Current Density, pH and Dissolved O2. Electroanalysis, 2015, 27, 2725-2730.                                                                                                             | 1.5 | 22        |
| 84 | Novel use of a micro-optode in overcoming the negative influence of the amperometric micro-probe on localized corrosion measurements. Corrosion Science, 2015, 95, 1-5.                                                     | 3.0 | 14        |
| 85 | Fault-tolerant hybrid epoxy-silane coating for corrosion protection of magnesium alloy AZ31.<br>Progress in Organic Coatings, 2015, 80, 98-105.                                                                             | 1.9 | 67        |
| 86 | H+-selective microelectrodes with optimized measuring range for corrosion studies. Sensors and Actuators B: Chemical, 2015, 207, 967-975.                                                                                   | 4.0 | 26        |
| 87 | Synergistic Protection against Corrosion of AA2024-T3 by Sol-Gel Coating Modified with La and Mo-Enriched Zeolites. Journal of the Electrochemical Society, 2014, 161, C215-C222.                                           | 1.3 | 33        |
| 88 | Cerium cinnamate as an environmentally benign inhibitor pigment for epoxy coatings on AA 2024-T3.<br>Progress in Organic Coatings, 2014, 77, 765-773.                                                                       | 1.9 | 52        |
| 89 | Multi-ion transport and reaction model used to improve the understanding of local current density measurements in presence of concentration gradients around a point current source. Electrochimica Acta, 2014, 127, 45-52. | 2.6 | 14        |
| 90 | pH-sensitive polymeric particles with increased inhibitor-loading capacity as smart additives for corrosion protective coatings for AA2024. Electrochimica Acta, 2014, 145, 123-131.                                        | 2.6 | 85        |

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Simulating corrosion of Al2CuMg phase by measuring ionic currents, chloride concentration and pH.<br>Corrosion Science, 2014, 88, 178-186.                                                                                       | 3.0 | 64        |
| 92  | Plasticizer-free solid-contact pH-selective microelectrode for visualization of local corrosion.<br>Journal of Electroanalytical Chemistry, 2014, 725, 32-38.                                                                    | 1.9 | 18        |
| 93  | Plasma anodized ZE41 magnesium alloy sealed with hybrid epoxy-silane coating. Corrosion Science, 2013, 73, 300-308.                                                                                                              | 3.0 | 90        |
| 94  | Study of local Na+ and Clâ^' distributions during the cut-edge corrosion of aluminum rich<br>metal-coated steel by scanning vibrating electrode and micro-potentiometric techniques.<br>Electrochimica Acta, 2013, 102, 319-327. | 2.6 | 25        |
| 95  | Sodium- and chloride-selective microelectrodes optimized for corrosion studies. Journal of Electroanalytical Chemistry, 2013, 706, 13-24.                                                                                        | 1.9 | 24        |
| 96  | The role of Ce(III)-enriched zeolites on the corrosion protection of AA2024-T3. Electrochimica Acta, 2013, 112, 549-556.                                                                                                         | 2.6 | 51        |
| 97  | Hybrid epoxy–silane coatings for improved corrosion protection of Mg alloy. Corrosion Science, 2013, 67, 82-90.                                                                                                                  | 3.0 | 162       |
| 98  | Thermodynamic Simulation of Phosphate Precipitation based on Ion-Selective Microelectrode<br>Measurements. Journal of the Brazilian Chemical Society, 2013, , .                                                                  | 0.6 | 0         |
| 99  | Sol–gel coatings modified with zeolite fillers for active corrosion protection of AA2024. Corrosion Science, 2012, 62, 153-162.                                                                                                  | 3.0 | 159       |
| 100 | "SMART―protective ability of water based epoxy coatings loaded with CaCO3 microbeads impregnated with corrosion inhibitors applied on AA2024 substrates. Electrochimica Acta, 2012, 83, 439-447.                                 | 2.6 | 177       |
| 101 | Evaluation of self-healing ability in protective coatings modified with combinations of layered double hydroxides and cerium molibdate nanocontainers filled with corrosion inhibitors. Electrochimica Acta, 2012, 60, 31-40.    | 2.6 | 263       |
| 102 | Cut-edge corrosion study on painted aluminum rich metallic coated steel by scanning vibrating electrode and micro-potentiometric techniques. Electrochimica Acta, 2012, 61, 107-117.                                             | 2.6 | 57        |
| 103 | The combined use of scanning vibrating electrode technique and micro-potentiometry to assess the self-repair processes in defects on "smart―coatings applied to galvanized steel. Electrochimica Acta, 2011, 56, 4475-4488.      | 2.6 | 111       |
| 104 | Quasi-simultaneous measurements of ionic currents by vibrating probe and pH distribution by ion-selective microelectrode. Electrochemistry Communications, 2011, 13, 20-23.                                                      | 2.3 | 54        |
| 105 | Inhibitor-doped sol–gel coatings for corrosion protection of magnesium alloy AZ31. Surface and<br>Coatings Technology, 2010, 204, 1479-1486.                                                                                     | 2.2 | 155       |
| 106 | Localized electrochemical study of corrosion inhibition in microdefects on coated AZ31 magnesium alloy. Electrochimica Acta, 2010, 55, 5401-5406.                                                                                | 2.6 | 117       |
| 107 | Micropotentiometric mapping of local distributions of Zn2+ relevant to corrosion studies.<br>Electrochemistry Communications, 2010, 12, 394-397.                                                                                 | 2.3 | 36        |
| 108 | Hydroxyapatite Microparticles as Feedback-Active Reservoirs of Corrosion Inhibitors. ACS Applied<br>Materials & Interfaces, 2010, 2, 3011-3022.                                                                                  | 4.0 | 187       |

SVIATLANA LAMAKA

| #   | ARTICLE                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Novel Solid ontact Ion‧elective Microelectrodes for Localized Potentiometric Measurements.<br>Electroanalysis, 2009, 21, 2447-2453.                                                         | 1.5  | 12        |
| 110 | Complex anticorrosion coating for ZK30 magnesium alloy. Electrochimica Acta, 2009, 55, 131-141.                                                                                             | 2.6  | 145       |
| 111 | Novel hybrid sol–gel coatings for corrosion protection of AZ31B magnesium alloy. Electrochimica<br>Acta, 2008, 53, 4773-4783.                                                               | 2.6  | 253       |
| 112 | Solâ€Gel/Polyelectrolyte Active Corrosion Protection System. Advanced Functional Materials, 2008, 18, 3137-3147.                                                                            | 7.8  | 115       |
| 113 | Monitoring local spatial distribution of Mg2+, pH and ionic currents. Electrochemistry<br>Communications, 2008, 10, 259-262.                                                                | 2.3  | 118       |
| 114 | The synergistic combination of bis-silane and CeO2Â-ZrO2 nanoparticles on the electrochemical behaviour of galvanised steel in NaCl solutions. Electrochimica Acta, 2008, 53, 5913-5922.    | 2.6  | 120       |
| 115 | Active Anticorrosion Coatings with Halloysite Nanocontainers. Journal of Physical Chemistry C, 2008, 112, 958-964.                                                                          | 1.5  | 340       |
| 116 | High effective organic corrosion inhibitors for 2024 aluminium alloy. Electrochimica Acta, 2007, 52, 7231-7247.                                                                             | 2.6  | 287       |
| 117 | Nanoporous titania interlayer as reservoir of corrosion inhibitors for coatings with self-healing ability. Progress in Organic Coatings, 2007, 58, 127-135.                                 | 1.9  | 280       |
| 118 | Role of intermetallic phases in localized corrosion of AA5083. Electrochimica Acta, 2007, 52, 7651-7659.                                                                                    | 2.6  | 267       |
| 119 | Mechanism of Corrosion Inhibition of AA2024 by Rare-Earth Compounds. Journal of Physical Chemistry B, 2006, 110, 5515-5528.                                                                 | 1.2  | 315       |
| 120 | Sulfate-selective electrode and its application for sulfate determination in aqueous solutions.<br>Analytica Chimica Acta, 2006, 562, 216-222.                                              | 2.6  | 28        |
| 121 | TiOx self-assembled networks prepared by templating approach as nanostructured reservoirs for self-healing anticorrosion pre-treatments. Electrochemistry Communications, 2006, 8, 421-428. | 2.3  | 116       |
| 122 | Layer-by-Layer Assembled Nanocontainers for Self-Healing Corrosion Protection. Advanced Materials, 2006, 18, 1672-1678.                                                                     | 11.1 | 653       |
| 123 | Title is missing!. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2002, 28, 709-725.                                                                                  | 0.3  | 10        |
| 124 | Extending the Lifetime of Weldable Primers by Means of Chemical Inhibitors. Materials Science Forum, 0, 587-588, 1003-1007.                                                                 | 0.3  | 1         |
| 125 | Evaluation of Corrosion Protection of Sol-Gel Coatings on AZ31B Magnesium Alloy. Materials Science Forum, 0, 587-588, 390-394.                                                              | 0.3  | 1         |