
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2561605/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crop genetic erosion: understanding and responding to loss of crop diversity. New Phytologist, 2022, 233, 84-118.	3.5	137
2	The Coalition for Conservation Genetics: Working across organizations to build capacity and achieve change in policy and practice. Conservation Science and Practice, 2022, 4, .	0.9	17
3	Clobal genetic diversity status and trends: towards a suite of Essential Biodiversity Variables (<scp>EBVs</scp>) for genetic composition. Biological Reviews, 2022, 97, 1511-1538.	4.7	73
4	Assessing ex situ genetic and ecogeographic conservation in a threatened but widespread oak after rangeâ€wide collecting effort. Evolutionary Applications, 2022, 15, 1002-1017.	1.5	6
5	Bringing together approaches to reporting on within species genetic diversity. Journal of Applied Ecology, 2022, 59, 2227-2233.	1.9	24
6	Reduced representation sequencing to understand the evolutionary history of Torrey pine (<i>Pinus) Tj ETQq0 0 (</i>	0 rgBT /Ov 2.0	verlock 10 Tf 5
7	Practical application of indicators for genetic diversity in CBD post-2020 global biodiversity framework implementation. Ecological Indicators, 2022, 142, 109167.	2.6	10
8	Effective population size remains a suitable, pragmatic indicator of genetic diversity for all species, including forest trees. Biological Conservation, 2021, 253, 108906.	1.9	32
9	Genetic Diversity Assessment of Ex Situ Collections of Endangered <i>Quercus hinckleyi</i> . International Journal of Plant Sciences, 2021, 182, 220-228.	0.6	4
10	Macrogenetic studies must not ignore limitations of genetic markers and scale. Ecology Letters, 2021, 24, 1282-1284.	3.0	27
11	Authors' Reply to Letter to the Editor: Continued improvement to genetic diversity indicator for CBD. Conservation Genetics, 2021, 22, 533-536.	0.8	18
12	Genetic, Morphological, and Environmental Differentiation of an Arid-Adapted Oak with a Disjunct Distribution. Forests, 2021, 12, 465.	0.9	7
13	Comparing Genetic Diversity in Three Threatened Oaks. Forests, 2021, 12, 561.	0.9	10
14	Global Commitments to Conserving and Monitoring Genetic Diversity Are Now Necessary and Feasible. BioScience, 2021, 71, 964-976.	2.2	96
15	Ex Situ Conservation of Large and Small Plant Populations Illustrates Limitations of Common Conservation Metrics. International Journal of Plant Sciences, 2021, 182, 263-276.	0.6	10
16	Charting a course for genetic diversity in the UN Decade of Ocean Science. Evolutionary Applications, 2021, 14, 1497-1518.	1.5	19
17	Opportunities and challenges of macrogenetic studies. Nature Reviews Genetics, 2021, 22, 791-807.	7.7	55
18	Proportional sampling strategy often captures more genetic diversity when population sizes vary. Biological Conservation, 2021, 261, 109261.	1.9	8

#	Article	IF	CITATIONS
19	Genetic diversity is considered important but interpreted narrowly in country reports to the Convention on Biological Diversity: Current actions and indicators are insufficient. Biological Conservation, 2021, 261, 109233.	1.9	65
20	Save Our Species: A Blueprint for Restoring Butternut (<i>Juglans cinerea</i>) across Eastern North America. Journal of Forestry, 2021, 119, 196-206.	0.5	8
21	IUCN Red List and the value of integrating genetics. Conservation Genetics, 2020, 21, 795-801.	0.8	65
22	Hybrid Breeding for Restoration of Threatened Forest Trees: Evidence for Incorporating Disease Tolerance in Juglans cinerea. Frontiers in Plant Science, 2020, 11, 580693.	1.7	9
23	Taxonomic similarity does not predict necessary sample size for <i>ex situ</i> conservation: a comparison among five genera. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200102.	1.2	38
24	Can a Botanic Garden Metacollection Better Conserve Wild Plant Diversity? A Case Study Comparing Pooled Collections with an Ideal Sampling Model. International Journal of Plant Sciences, 2020, 181, 485-496.	0.6	26
25	Post-2020 goals overlook genetic diversity. Science, 2020, 367, 1083-1085.	6.0	132
26	Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biological Conservation, 2020, 248, 108654.	1.9	285
27	New guidance for ex situ gene conservation: Sampling realistic population systems and accounting for collection attrition. Biological Conservation, 2019, 235, 199-208.	1.9	51
28	Inference of biogeographic history by formally integrating distinct lines of evidence: genetic, environmental niche and fossil. Ecography, 2019, 42, 1991-2011.	2.1	19
29	†Intentional Genetic Manipulation' as a conservation threat. Conservation Genetics Resources, 2019, 11, 237-247.	0.4	16
30	Integrative conservation genetics: Prioritizing populations using climate predictions, adaptive potential and habitat connectivity. Molecular Ecology Resources, 2018, 18, 14-17.	2.2	17
31	Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation. Evolutionary Applications, 2018, 11, 1035-1052.	1.5	169
32	Implementing a new approach to effective conservation of genetic diversity, with ash (Fraxinus) Tj ETQq0 0 0 rgE	ST /Overlov 1.9	ck 10 Tf 50 2
33	Optimizing Conservation Strategies for a Threatened Tree Species: In Situ Conservation of White Ash (Fraxinus americana L.) Genetic Diversity through Insecticide Treatment. Forests, 2018, 9, 202.	0.9	20
34	Quantitative evaluation of hybridization and the impact on biodiversity conservation. Ecology and Evolution, 2017, 7, 320-330.	0.8	39
35	Rangewide population differentiation and population substructure in Quercus rubra L Tree Genetics and Genomes, 2017, 13, 1.	0.6	12
36	Responsible <scp>RAD</scp> : Striving for best practices in population genomic studies of adaptation. Molecular Ecology Resources, 2017, 17, 366-369.	2.2	58

#	Article	IF	CITATIONS
37	lce ages leave genetic diversity â€~hotspots' in Europe but not in Eastern North America. Ecology Letters, 2017, 20, 1459-1468.	3.0	43
38	Breaking RAD: an evaluation of the utility of restriction siteâ€associated DNA sequencing for genome scans of adaptation. Molecular Ecology Resources, 2017, 17, 142-152.	2.2	322
39	<scp>skelesim</scp> : an extensible, general framework for population genetic simulation in R. Molecular Ecology Resources, 2017, 17, 101-109.	2.2	9
40	Finding the Genomic Basis of Local Adaptation: Pitfalls, Practical Solutions, and Future Directions. American Naturalist, 2016, 188, 379-397.	1.0	663
41	Accounting for the nested nature of genetic variation across levels of organization improves our understanding of biodiversity and community ecology. Oikos, 2016, 125, 895-904.	1.2	9
42	Ecology, environment and evolutionary history influence genetic structure in five mammal species from the Italian Alps. Biological Journal of the Linnean Society, 2016, 117, 428-446.	0.7	10
43	The importance of effective sampling for exploring the population dynamics of haploid–diploid seaweeds. Journal of Phycology, 2016, 52, 1-9.	1.0	25
44	Ancient, but not recent, population declines have had a genetic impact on alpine yellow-bellied toad populations, suggesting potential for complete recovery. Conservation Genetics, 2016, 17, 727-743.	0.8	6
45	Chloroplast haplotypes suggest preglacial differentiation and separate postglacial migration paths for the threatened North American forest tree Juglans cinerea L Tree Genetics and Genomes, 2015, 11, 1.	0.6	38
46	Loci under selection during multiple range expansions of an invasive plant are mostly population specific, but patterns are associated with climate. Molecular Ecology, 2015, 24, 3360-3371.	2.0	10
47	Developing quantitative seed sampling protocols using simulations: A reply to comments from Guja et al. and Guerrant et al Biological Conservation, 2015, 184, 469-470.	1.9	5
48	Ex situ seed collections will benefit from considering spatial sampling design and species' reproductive biology. Biological Conservation, 2015, 187, 182-191.	1.9	59
49	Comparative evaluation of potential indicators and temporal sampling protocols for monitoring genetic erosion. Evolutionary Applications, 2014, 7, 984-998.	1.5	102
50	An overview of the utility of population simulation software in molecular ecology. Molecular Ecology, 2014, 23, 2383-2401.	2.0	71
51	Optimal sampling of seeds from plant populations for ex-situ conservation of genetic biodiversity, considering realistic population structure. Biological Conservation, 2014, 177, 90-99.	1.9	115
52	Spatial genetic structure in 21 populations of butternut, a temperate forest tree (Juglans cinerea L.), is correlated to spatial arrangement, habitat, and land-use history. Forest Ecology and Management, 2014, 314, 50-58.	1.4	13
53	The number of markers and samples needed for detecting bottlenecks under realistic scenarios, with and without recovery: a simulationâ€based study. Molecular Ecology, 2013, 22, 3444-3450.	2.0	64
54	Conservation Genetic Resources for Effective Species Survival (ConGRESS): Bridging the divide between conservation research and practice. Journal for Nature Conservation, 2013, 21, 433-437.	0.8	32

#	Article	IF	CITATIONS
55	Bringing genetic diversity to the forefront of conservation policy and management. Conservation Genetics Resources, 2013, 5, 593-598.	0.4	145
56	Sample Planning Optimization Tool for conservation and population Genetics (<scp>SPOTG</scp>): a software for choosing the appropriate number of markers and samples. Methods in Ecology and Evolution, 2013, 4, 299-303.	2.2	66
57	Challenges in global biodiversity conservation and solutions that cross sociology, politics, economics and ecology. Biology Letters, 2012, 8, 897-899.	1.0	7
58	A rare case of natural regeneration in butternut, a threatened forest tree, is parent and space limited. Conservation Genetics, 2012, 13, 1447-1457.	0.8	13
59	Homonymy, synonymy and hybrid misassignments in butternut (Juglans cinerea) and Japanese walnut (Juglans ailantifolia) nut cultivars. Genetic Resources and Crop Evolution, 2012, 59, 1397-1405.	0.8	8
60	Computer simulations: tools for population and evolutionary genetics. Nature Reviews Genetics, 2012, 13, 110-122.	7.7	221
61	Challenging a "Why Should I Care" Attitude by Incorporating Societal Issues in the Classroom. American Biology Teacher, 2011, 73, 39-41.	0.1	0
62	Rangeâ€wide distribution of genetic diversity in the North American tree <i>Juglans cinerea</i> : a product of range shifts, not ecological marginality or recent population decline. Molecular Ecology, 2010, 19, 4876-4891.	2.0	78
63	Geographically extensive hybridization between the forest trees American butternut and Japanese walnut. Biology Letters, 2009, 5, 324-327.	1.0	46
64	Thirteen nuclear microsatellite loci for butternut (<i>Juglans cinerea </i> L.). Molecular Ecology Resources, 2008, 8, 643-646.	2.2	31
65	Range shifts in butternut, a rare, endangered tree, in response to past climate and modern conditions. Journal of Biogeography, 0, , .	1.4	1