Yunsheng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2561411/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insights into acylation mechanisms: coâ€expression of serine carboxypeptidaseâ€like acyltransferases and their nonâ€catalytic companion paralogs. Plant Journal, 2022, 111, 117-133.	5.7	26
2	Functional analysis of the dihydroflavonol 4-reductase family of <i>Camellia sinensis</i> : exploiting key amino acids to reconstruct reduction activity. Horticulture Research, 2022, 9, .	6.3	15
3	Optimization of the Biosynthesis of B-Ring Ortho-Hydroxy Lated Flavonoids Using the 4-Hydroxyphenylacetate 3-Hydroxylase Complex (HpaBC) of Escherichia coli. Molecules, 2021, 26, 2919.	3.8	7
4	The chromosomeâ€scale reference genome of <i>Rubus chingii</i> Hu provides insight into the biosynthetic pathway of hydrolyzable tannins. Plant Journal, 2021, 107, 1466-1477.	5.7	26
5	Functional characterization of three flavonol synthase genes from Camellia sinensis: Roles in flavonol accumulation. Plant Science, 2020, 300, 110632.	3.6	29
6	Discovery and characterization of tannase genes in plants: roles in hydrolysis of tannins. New Phytologist, 2020, 226, 1104-1116.	7.3	51
7	Functional analysis of flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylases from tea plant (Camellia sinensis), involved in the B-ring hydroxylation of flavonoids. Gene, 2019, 717, 144046.	2.2	27
8	Isolation and Characterization of Key Genes that Promote Flavonoid Accumulation in Purple-leaf Tea (Camellia sinensis L.). Scientific Reports, 2018, 8, 130.	3.3	58
9	Insight into Catechins Metabolic Pathways of <i>Camellia sinensis</i> Based on Genome and Transcriptome Analysis. Journal of Agricultural and Food Chemistry, 2018, 66, 4281-4293.	5.2	62
10	Molecular Evidence for Catechin Synthesis and Accumulation in Tea Buds (<i>Camellia sinensis</i>). Journal of Agricultural and Food Chemistry, 2018, 66, 63-69.	5.2	7
11	Molecular Cloning and Characterization of Galactinol Synthases in <i>Camellia sinensis</i> with Different Responses to Biotic and Abiotic Stressors. Journal of Agricultural and Food Chemistry, 2017, 65, 2751-2759.	5.2	40
12	Functional Analysis of an Uridine Diphosphate Glycosyltransferase Involved in the Biosynthesis of Polyphenolic Glucoside in Tea Plants (<i>Camellia sinensis</i>). Journal of Agricultural and Food Chemistry, 2017, 65, 10993-11001.	5.2	40
13	Tea waste: an effective and economic substrate for oyster mushroom cultivation. Journal of the Science of Food and Agriculture, 2016, 96, 680-684.	3.5	58
14	Major flavonoid constituents and short-term effects of Chun Mee tea in rats. Journal of Food and Drug Analysis, 2015, 23, 93-98.	1.9	9
15	Effect of low-intensity white light mediated de-etiolation on the biosynthesis of polyphenols in tea seedlings. Plant Physiology and Biochemistry, 2014, 80, 328-336.	5.8	24
16	The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis. Functional and Integrative Genomics, 2013, 13, 75-98.	3.5	216
17	Tissue-Specific, Development-Dependent Phenolic Compounds Accumulation Profile and Gene Expression Pattern in Tea Plant [Camellia sinensis]. PLoS ONE, 2013, 8, e62315.	2.5	202
18	Purification and Characterization of a Novel Galloyltransferase Involved in Catechin Galloylation in the Tea Plant (Camellia sinensis). Journal of Biological Chemistry, 2012, 287, 44406-44417.	3.4	144

#	Article	IF	CITATIONS
19	Light-induced expression of genes involved in phenylpropanoid biosynthetic pathways in callus of tea (Camellia sinensis (L.) O. Kuntze). Scientia Horticulturae, 2012, 133, 72-83.	3.6	75
20	Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze). Scientia Horticulturae, 2012, 141, 7-16.	3.6	185