
David Campos-Gaona

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2561010/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fault Ride-Through Improvement of DFIG-WT by Integrating a Two-Degrees-of-Freedom Internal Model Control. IEEE Transactions on Industrial Electronics, 2013, 60, 1133-1145.	7.9	75
2	DC-Link Control Filtering Options for Torque Ripple Reduction in Low-Power Wind Turbines. IEEE Transactions on Power Electronics, 2017, 32, 4812-4826.	7.9	43
3	Fast Selective Harmonic Mitigation in Multifunctional Inverters Using Internal Model Controllers and Synchronous Reference Frames. IEEE Transactions on Industrial Electronics, 2017, 64, 6338-6349.	7.9	31
4	Robust Active Damping in <i>LCL</i> -Filter-Based Medium-Voltage Parallel Grid Inverters for Wind Turbines. IEEE Transactions on Power Electronics, 2018, 33, 10846-10857.	7.9	24
5	A Novel Compensation Scheme Based on a Virtual Air Gap Variable Reactor for AC Voltage Control. IEEE Transactions on Industrial Electronics, 2014, 61, 6547-6555.	7.9	19
6	Assessment of Multi-Use Offshore Platforms: Structure Classification and Design Challenges. Sustainability, 2020, 12, 1860.	3.2	19
7	Control-based fault current limiter for modular multilevel voltage-source converters. International Journal of Electrical Power and Energy Systems, 2020, 118, 105750.	5.5	17
8	Distance protection algorithm for multiterminal HVDC systems using the Hilbert–Huang transform. IET Generation, Transmission and Distribution, 2020, 14, 3022-3032.	2.5	17
9	Bottom-Up Electrification Introducing New Smart Grids Architecture—Concept Based on Feasibility Studies Conducted in Rwanda. Energies, 2019, 12, 2439.	3.1	15
10	Current-sensorless control of an SPWM H-Bridge-based PFC rectifier designed considering voltage sag condition. Electric Power Systems Research, 2016, 130, 181-191.	3.6	14
11	THD Reduction in Wind Energy System Using Type-4 Wind Turbine/PMSG Applying the Active Front-End Converter Parallel Operation. Energies, 2018, 11, 2458.	3.1	14
12	An Active Power Filter Based on a Three-Level Inverter and 3D-SVPWM for Selective Harmonic and Reactive Compensation. Energies, 2017, 10, 297.	3.1	12
13	Modeling and control design of a Vienna rectifier based electrolyzer. , 2016, , .		11
14	Nonminimum Phase Compensation in VSC-HVDC Systems for Fast Direct Voltage Control. IEEE Transactions on Power Delivery, 2015, 30, 2535-2543.	4.3	10
15	Control of flywheel energy storage systems as virtual synchronous machines for microgrids. , 2015, ,		10
16	Sizing and Coordination Strategies of Battery Energy Storage System Co-Located with Wind Farm: The UK Perspective. Energies, 2021, 14, 1439.	3.1	9
17	Dynamic Wind Power Plant Control for System Integration Using the Generator Response Following Concept. Energies, 2020, 13, 1804.	3.1	7
18	Novel Control Approach for a Hybrid Grid-Forming HVDC Offshore Transmission System. Energies, 2020, 13, 1681.	3.1	6

#	Article	IF	CITATIONS
19	MPPT and control design of a Vienna rectifier-based low power wind turbine with reduced number of sensors. , 2016, , .		5
20	Nonunit Distance Protection Algorithm for Multiterminal MMC-HVdc Systems Using DC Capacitor Resonance Frequency. IEEE Transactions on Industrial Electronics, 2022, 69, 12924-12933.	7.9	5
21	Wind-Plus-Battery system optimisation for frequency response service: The UK perspective. Electric Power Systems Research, 2022, 211, 108400.	3.6	5
22	THD Reduction in Distributed Renewables Energy Access through Wind Energy Conversion System Integration under Wind Speed Conditions in Tamaulipas, Mexico. Energies, 2019, 12, 3550.	3.1	4
23	Assessing the Impact of DFIG Synthetic Inertia Provision on Power System Small-Signal Stability. Energies, 2019, 12, 3440.	3.1	4
24	Comparison of electrical collection topologies for multi-rotor wind turbines. Wind Energy Science, 2020, 5, 1237-1252.	3.3	4
25	Dynamic mitigation of grid current harmonics using the power sphere concept in voltage source inverters. , 2016, , .		2
26	Modeling of photovoltaic grid connected generation system based on three level NPC converter. , 2017, , .		2
27	An Approximated Analytical Model for Pole-to-Ground Faults in Symmetrical Monopole MMC-HVDC Systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 7009-7017.	5.4	2
28	Turbine layout optimisation for largeâ€scale offshore wind farms–A gridâ€based method. IET Renewable Power Generation, 2021, 15, 3806-3822.	3.1	2
29	A field trial of off-grid SHS Interconnection in Rwanda's Northern Province. Energy for Sustainable Development, 2022, 66, 69-78.	4.5	2
30	Techno-Economic Analysis of Energy Storage System for Wind Farms: The UK Perspective. , 2018, , .		1
31	Short-Circuit Analytical Model for Modular Multilevel Converters Considering DC Cable Capacitance. IEEE Access, 2020, 8, 202774-202784.	4.2	1
32	Voltage control ancillary services for low voltage distributed generation. International Journal of Smart Grid and Clean Energy, 2018, 7, 98-108.	0.4	1
33	DSP implementation of a current control for a VSC. , 2013, , .		0
34	Offshore Wind Energy Systems. , 2014, , 1-14.		0
35	Control design of a neutral point clamped converter based active power filter for the selective harmonic compensation. , 2016, , .		0
36	Mathematical Modelling of Reduced Order Induction Machines for VFT Applications. , 2018, , .		0

#	Article	IF	CITATIONS
37	Modelling Stability Improvement In Kazakhstan's Power System By Using Battery Energy Storage. , 2021, , .		0