Grzegorz Bartosz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2560759/publications.pdf

Version: 2024-02-01

224 papers

8,251 citations

45 h-index 80 g-index

225 all docs 225 docs citations

times ranked

225

12606 citing authors

#	Article	IF	CITATIONS
1	Dosing metric in cellular experiments: The mol/cell metric has its limitations. Toxicology in Vitro, 2022, 78, 105272.	1.1	O
2	Is hydrogen peroxide generated in wine?. Food Bioscience, 2022, 45, 101487.	2.0	4
3	Antioxidant properties of hispidulin. Natural Product Research, 2022, 36, 6401-6404.	1.0	6
4	Hydrogen peroxide is formed upon cooking of vegetables. Acta Biochimica Polonica, 2022, , .	0.3	0
5	A Modification of the ABTS• Decolorization Method and an Insight into Its Mechanism. Processes, 2022, 10, 1288.	1.3	11
6	Delphinidin Increases the Sensitivity of Ovarian Cancer Cell Lines to 3-bromopyruvate. International Journal of Molecular Sciences, 2021, 22, 709.	1.8	10
7	Biological Properties and Applications of Betalains. Molecules, 2021, 26, 2520.	1.7	105
8	The Potential Effects of Phytoestrogens: The Role in Neuroprotection. Molecules, 2021, 26, 2954.	1.7	39
9	Comparison of the Effects of Resveratrol and Its Derivatives on the Radiation Response of MCF-7 Breast Cancer Cells. International Journal of Molecular Sciences, 2021, 22, 9511.	1.8	9
10	pH-Responsive Redox Nanoparticles Protect SH-SY5Y Cells at Lowered pH in a Cellular Model of Parkinson's Disease. Molecules, 2021, 26, 543.	1.7	8
11	Effect of Antioxidants on the Fibroblast Replicative Lifespan <i>In Vitro</i> . Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-15.	1.9	10
12	Comprehensive Analysis of ABCG2 Genetic Variation in the Polish Population and Its Inter-Population Comparison. Genes, 2020, 11, 1144.	1.0	4
13	Fluorescent Products of Anthocyanidin and Anthocyanin Oxidation. Journal of Agricultural and Food Chemistry, 2020, 68, 12019-12027.	2.4	5
14	Comparison of Antioxidants: The Limited Correlation between Various Assays of Antioxidant Activity. Molecules, 2020, 25, 3244.	1.7	6
15	The Antiaggregative and Antiamyloidogenic Properties of Nanoparticles: A Promising Tool for the Treatment and Diagnostics of Neurodegenerative Diseases. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-11.	1.9	19
16	Possible artefacts of antioxidant assays performed in the presence of nitroxides and nitroxide-containing nanoparticles. Analytical Biochemistry, 2020, 597, 113698.	1.1	6
17	Nitroxide Radical-Containing Redox Nanoparticles Protect Neuroblastoma SH-SY5Y Cells against 6-Hydroxydopamine Toxicity. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-19.	1.9	13
18	Interaction of Catechins with Human Erythrocytes. Molecules, 2020, 25, 1456.	1.7	11

#	Article	IF	CITATIONS
19	Effect of antioxidants on the H2O2-induced premature senescence of human fibroblasts. Aging, 2020, 12, 1910-1927.	1.4	20
20	Comparison of protective properties of resveratrol and melatonin in the radiation inactivation and destruction of glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase. International Journal of Radiation Biology, 2019, 95, 1472-1483.	1.0	3
21	Metastatic prostate cancer cells are highly sensitive to 3-bromopyruvic acid. Life Sciences, 2019, 227, 212-223.	2.0	18
22	3-Bromopyruvate induces expression of antioxidant genes. Free Radical Research, 2019, 53, 170-178.	1.5	6
23	Dietary antioxidants as a source of hydrogen peroxide. Food Chemistry, 2019, 278, 692-699.	4.2	59
24	Yeast as a biosensor for antioxidants: simple growth tests employing a Saccharomyces cerevisiae mutant defective in superoxide dismutase Acta Biochimica Polonica, 2019, 52, 679-684.	0.3	28
25	The role of resveratrol and melatonin in the nitric oxide and its oxidation products mediated functional and structural modifications of two glycolytic enzymes: GAPDH and LDH. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 877-885.	1.1	6
26	Antioxidant properties of catechins: Comparison with other antioxidants. Food Chemistry, 2018, 241, 480-492.	4.2	301
27	Tempo-phosphate as an ESR tool to study phosphate transport. Free Radical Research, 2018, 52, 335-338.	1.5	2
28	Redox nanoparticles: synthesis, properties and perspectives of use for treatment of neurodegenerative diseases. Journal of Nanobiotechnology, 2018, 16, 87.	4.2	41
29	Role of Oxidative, Nitrative, and Chlorinative Protein Modifications in Aging and Age-Related Diseases. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-2.	1.9	6
30	Oxidative Stress Markers Patients with Parotid Gland Tumors: A Pilot Study. BioMed Research International, 2018, 2018, 1-7.	0.9	6
31	Antioxidant properties of ferrous flavanol mixtures. Food Chemistry, 2018, 268, 567-576.	4.2	18
32	Origin and pathophysiology of protein carbonylation, nitration and chlorination in age-related brain diseases and aging. Aging, 2018, 10, 868-901.	1.4	62
33	Silver nanoparticles can attenuate nitrative stress. Redox Biology, 2017, 11, 646-652.	3.9	9
34	Oxidative modifications of blood serum proteins in myasthenia gravis. Journal of Neuroimmunology, 2017, 305, 145-153.	1.1	15
35	Moderateâ€intensity endurance training improves endothelial glycocalyx layer integrity in healthy young men. Experimental Physiology, 2017, 102, 70-85.	0.9	26
36	High Resolution Melting (HRM) for High-Throughput Genotypingâ€"Limitations and Caveats in Practical Case Studies. International Journal of Molecular Sciences, 2017, 18, 2316.	1.8	87

#	Article	lF	CITATIONS
37	Oxidative Modification of Blood Serum Proteins in Multiple Sclerosis after Interferon Beta and Melatonin Treatment. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-8.	1.9	27
38	Sabina Galiniak, Grzegorz Bartosz, Izabela Sadowska-Bartosz. General Physiology and Biophysics, 2017, 36, 175-186.	0.4	4
39	Modification of the deoxyribose test to detect strong iron binding. Acta Biochimica Polonica, 2017, 64, 195-198.	0.3	8
40	TLR2 activation induces antioxidant defence in human monocyte-macrophage cell line models. Oncotarget, 2017, 8, 54243-54264.	0.8	15
41	Developmental changes in the levels and redox potentials of main hemolymph thiols/disulfides in the Jamaican field cricket Gryllus assimilis. Acta Biochimica Polonica, 2017, 64, 503-506.	0.3	0
42	Radiation-induced inactivation of enzymes $\hat{a} \in \text{``Molecular mechanism based on inactivation of dehydrogenases.}$ Radiation Physics and Chemistry, 2016, 128, 112-117.	1.4	11
43	Effect of glycation inhibitors on aging and age-related diseases. Mechanisms of Ageing and Development, 2016, 160, 1-18.	2.2	43
44	Antioxidant properties of atypical antipsychotic drugs used in the treatment of schizophrenia. Schizophrenia Research, 2016, 176, 245-251.	1.1	40
45	ABCB1-overexpressing MDCK-II cells are hypersensitive to 3-bromopyruvic acid. Life Sciences, 2016, 162, 138-144.	2.0	8
46	Leishmania tarentolae as a host for heterologous expression of functional human ABCB6 transporter. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2617-2624.	1.4	7
47	Effect of 3-bromopyruvate acid on the redox equilibrium in non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells. Journal of Bioenergetics and Biomembranes, 2016, 48, 23-32.	1.0	42
48	Anticancer agent 3-bromopyruvic acid forms a conjugate with glutathione. Pharmacological Reports, 2016, 68, 502-505.	1.5	23
49	Nutritional Strategies to Modulate Inflammation and Oxidative Stress in Patients with Cystic Fibrosis. , 2015, , 145-153.		0
50	Genetic variation of the ABC transporter gene ABCC1 (Multidrug resistance protein 1 $\hat{a} \in MRP1$) in the Polish population. BMC Genetics, 2015, 16, 114.	2.7	14
51	Prevention of Protein Glycation by Natural Compounds. Molecules, 2015, 20, 3309-3334.	1.7	122
52	Effects of plant extract antioxidative phenolic compounds on energetic status and viability of Saccharomyces cerevisiae cells undergoing oxidative stress. Journal of Functional Foods, 2015, 16, 364-377.	1.6	12
53	Nitroxides protect against peroxynitrite-induced nitration and oxidation. Free Radical Biology and Medicine, 2015, 89, 1165-1175.	1.3	21
54	Acrolein-Induced Oxidative Stress and Cell Death Exhibiting Features of Apoptosis in the Yeast Saccharomyces cerevisiae Deficient in SOD1. Cell Biochemistry and Biophysics, 2015, 71, 1525-1536.	0.9	25

#	Article	IF	CITATIONS
55	Endocytosis of ABCG2 drug transporter caused by binding of 5D3 antibody: trafficking mechanisms and intracellular fate. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1759-1771.	1.9	13
56	Glycation of bovine serum albumin by ascorbate in vitro: Possible contribution of the ascorbyl radical?. Redox Biology, 2015, 6, 93-99.	3.9	32
57	Is Iron Chelation Important in Preventing Glycation of Bovine Serum Albumin in Vitro?. Cellular and Molecular Biology Letters, 2015, 20, 562-70.	2.7	3
58	Ascorbic acid and protein glycation inÂvitro. Chemico-Biological Interactions, 2015, 240, 154-162.	1.7	9
59	Effect of high glucose concentrations on human erythrocytes in vitro. Redox Biology, 2015, 5, 381-387.	3.9	73
60	Oxidative, Nitrosative, and Chlorinative Stress: Biomarkers. Oxidative Stress in Applied Basic Research and Clinical Practice, 2015, , 1-39.	0.4	4
61	Oxidative Modification of Proteins in Pediatric Cystic Fibrosis with Bacterial Infections. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-10.	1.9	28
62	Kinetics of Glycoxidation of Bovine Serum Albumin by Methylglyoxal and Glyoxal and its Prevention by Various Compounds. Molecules, 2014, 19, 4880-4896.	1.7	70
63	Collateral sensitivity: ABCG2-overexpressing cells are more vulnerable to oxidative stress. Free Radical Biology and Medicine, 2014, 76, 47-52.	1.3	20
64	Effect of Antioxidants Supplementation on Aging and Longevity. BioMed Research International, 2014, 2014, 1-17.	0.9	199
65	Antioxidant action of SMe1EC2, the low-basicity derivative of the pyridoindole stobadine, in cell free chemical models and at cellular level. Interdisciplinary Toxicology, 2014, 7, 27-32.	1.0	7
66	Polyphenols protect against protein glycoxidation. Free Radical Biology and Medicine, 2014, 75, S47.	1.3	12
67	Effect of functionalized and non-functionalized nanodiamond on the morphology and activities of antioxidant enzymes of lung epithelial cells (A549). Chemico-Biological Interactions, 2014, 222, 135-147.	1.7	13
68	Kinetics of Glycoxidation of Bovine Serum Albumin by Glucose, Fructose and Ribose and Its Prevention by Food Components. Molecules, 2014, 19, 18828-18849.	1.7	72
69	Total Antioxidant Capacity of Feces of Mammalian Herbivores and Carnivores. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2014, 69, 165-169.	0.6	1
70	Oxidative modification of blood serum proteins in multiple sclerosis after interferon or mitoxantrone treatment. Journal of Neuroimmunology, 2014, 266, 67-74.	1.1	25
71	Protection against peroxynitrite reactions by flavonoids. Food Chemistry, 2014, 164, 228-233.	4.2	16
72	Genotoxic and mutagenic activity of diamond nanoparticles in human peripheral lymphocytes in vitro. Carbon, 2014, 68, 763-776.	5.4	84

#	Article	IF	Citations
73	Transport of 3-bromopyruvate across the human erythrocyte membrane. Cellular and Molecular Biology Letters, 2014, 19, 201-14.	2.7	13
74	HOCl-modified phosphatidylcholines induce apoptosis and redox imbalance in HUVEC-ST cells. Archives of Biochemistry and Biophysics, 2014, 548, 1-10.	1.4	8
75	Intracellular transport of nanodiamond particles in human endothelial and epithelial cells. Chemico-Biological Interactions, 2014, 219, 90-100.	1.7	19
76	Enhanced Antioxidant Capacity and Anti-Ageing Biomarkers after Diet Micronutrient Supplementation. Molecules, 2014, 19, 14794-14808.	1.7	27
77	Molecular strategies to prevent, inhibit, and degrade advanced glycoxidation and advanced lipoxidation end products. Free Radical Research, 2013, 47, 93-137.	1.5	132
78	Pitfalls of assays devoted to evaluation of oxidative stress induced by inorganic nanoparticles. Talanta, 2013, 116, 753-763.	2.9	61
79	Dimethyl sulfoxide induces oxidative stress in the yeast <i>Saccharomyces cerevisiae</i> Research, 2013, 13, 820-830.	1.1	45
80	Oxidative modification of serum proteins in multiple sclerosis. Neurochemistry International, 2013, 63, 507-516.	1.9	37
81	Effect of 3â€bromopyruvic acid on human erythrocyte antioxidant defense system. Cell Biology International, 2013, 37, 1285-1290.	1.4	25
82	How do erythrocytes contribute to the ABTS* scavenging capacity of blood? Free Radical Research, 2013, 47, 35-43.	1.5	4
83	Protection of flavonoids against hypochlorite-induced protein modifications. Food Chemistry, 2013, 141, 1227-1241.	4.2	23
84	Role of melatonin receptor <scp>MT</scp> ₂ and quinone reductase <scp>II</scp> in the regulation of the redox status of 3 <scp>T</scp> 3â€ <scp>L</scp> 1 preadipocytes in vitro. Cell Biology International, 2013, 37, 835-842.	1.4	12
85	Genetic structure of Hucul and Anglo-Arabian horses at the Tert locus. Annals of Animal Science, 2012, 12, 483-494.	0.6	3
86	High-performance liquid chromatographic method to evaluate the hydrogen atom transfer during reaction between 1,1-diphenyl-2-picryl-hydrazyl radical and antioxidants. Analytica Chimica Acta, 2012, 711, 97-106.	2.6	30
87	Cadmium-induced changes in genomic DNA-methylation status increase aneuploidy events in a pig Robertsonian translocation model. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2012, 747, 182-189.	0.9	42
88	Nitric oxide plasma concentration associated with cognitive impairment in patients with recurrent depressive disorder. Neuroscience Letters, 2012, 510, 127-131.	1.0	59
89	Hemodialysis Decreases Serum Brain-Derived Neurotrophic Factor Concentration in Humans. Neurochemical Research, 2012, 37, 2715-2724.	1.6	27
90	Hypertrophy hypothesis as an alternative explanation of the phenomenon of replicative aging of yeast. FEMS Yeast Research, 2012, 12, 97-101.	1.1	37

#	Article	IF	CITATIONS
91	Overcoming cellular multidrug resistance using classical nanomedicine formulations. European Journal of Pharmaceutical Sciences, 2012, 45, 421-428.	1.9	53
92	Ascorbate and thiol antioxidants abolish sensitivity of yeast Saccharomyces cerevisiae to disulfiram. Cell Biology and Toxicology, 2012, 28, 1-9.	2.4	19
93	The hydrolytic activity of esterases in the yeast <i>Saccharomyces cerevisiae</i> i>is strain dependent. Cell Biology International, 2011, 35, 1111-1119.	1.4	7
94	Yeast Saccharomyces cerevisiae devoid of Cu,Zn-superoxide dismutase as a cellular model to study acrylamide toxicity. Toxicology in Vitro, 2011, 25, 573-579.	1.1	21
95	Detection of 3-chlorinated tyrosine residues in human cells by flow cytometry. Journal of Immunological Methods, 2011, 369, 141-145.	0.6	11
96	Age-related changes in genomic stability of horses. Mechanisms of Ageing and Development, 2011, 132, 257-268.	2.2	15
97	A genetic analysis of nitric oxide-mediated signaling during chronological aging in the yeast. Biogerontology, 2011, 12, 309-320.	2.0	15
98	Sensitivity of antioxidantâ€deficient yeast to hypochlorite and chlorite. Yeast, 2011, 28, 595-609.	0.8	13
99	Lipid Oxidation in Food Systems. Chemical and Functional Properties of Food Components Series, 2010, , 163-184.	0.1	3
100	The antioxidant properties of carnitine in vitro. Cellular and Molecular Biology Letters, 2010, 15, 90-7.	2.7	33
101	i > Helicobacter pylori cagA < i > Gene Polymorphism Affects the Total Antioxidant Capacity of Human Saliva. Helicobacter, 2010, 15, 53-57.	1.6	27
102	Natural and synthetic antioxidants: An updated overview. Free Radical Research, 2010, 44, 1216-1262.	1.5	229
103	PRINS detection of 18S rDNA in pig, red fox and Chinese raccoon dog, and centromere DNA in horse. Hereditas, 2010, 147, 320-324.	0.5	6
104	N-Chloroamino acids mediate the action of hypochlorite on A549 lung cancer cells in culture. Toxicology, 2010, 270, 112-120.	2.0	13
105	Effect of phosphatidylcholine chlorohydrins on human erythrocytes. Chemistry and Physics of Lipids, 2010, 163, 639-647.	1.5	14
106	Singleâ€nucleotide polymorphisms and mRNA expression for melatonin synthesis rateâ€limiting enzyme in recurrent depressive disorder. Journal of Pineal Research, 2010, 48, 311-317.	3.4	53
107	Vmr 1p is a novel vacuolar multidrug resistance ABC transporter in Saccharomyces cerevisiae. FEMS Yeast Research, 2010, 10, 828-838.	1.1	31
108	An inter-laboratory validation of methods of lipid peroxidation measurement in UVA-treated human plasma samples. Free Radical Research, 2010, 44, 1203-1215.	1.5	56

#	Article	IF	Citations
109	Oxidative stress during aging of the yeast in a stationary culture and its attenuation by antioxidants. Cell Biology International, 2010, 34, 731-736.	1.4	17
110	Nucleolus as an oxidative stress sensor in the yeast <i>Saccharomyces cerevisiae</i> . Redox Report, 2010, 15, 87-96.	1.4	20
111	Estimation of antioxidant capacity against peroxynitrite and hypochlorite with fluorescein. Talanta, 2010, 80, 2196-2198.	2.9	12
112	Redox status of equine seminal plasma reflects the pattern and magnitude of DNA damage in sperm cells. Theriogenology, 2010, 74, 1677-1684.	0.9	23
113	Non-enzymatic antioxidant capacity assays: Limitations of use in biomedicine. Free Radical Research, 2010, 44, 711-720.	1.5	130
114	Determination of antiradical and antioxidant activity: basic principles and new insights Acta Biochimica Polonica, 2010, 57, .	0.3	134
115	Magnesium content, total antioxidant status andÂlipid peroxidation inÂrainbow trout (OncorhynchusÂmykiss Walbaum). Magnesium Research, 2009, 22, 273-279.	0.4	5
116	Reactive oxygen species: Destroyers or messengers?. Biochemical Pharmacology, 2009, 77, 1303-1315.	2.0	298
117	Cu,Znâ€superoxide dismutase is necessary for proper function of VDAC in <i>Saccharomyces cerevisiae</i> cells. FEBS Letters, 2009, 583, 449-455.	1.3	24
118	Cell volume as a factor limiting the replicative lifespan of the yeast Saccharomyces cerevisiae. Biogerontology, 2009, 10, 481-488.	2.0	53
119	Melatonin improves oxidative stress parameters measured in the blood of elderly type 2 diabetic patients. Journal of Pineal Research, 2009, 46, 333-337.	3.4	75
120	Rapid detection of yeast rRNA genes with primed <i>in situ</i> (PRINS) labeling. FEMS Yeast Research, 2009, 9, 634-640.	1.1	6
121	The effects of superoxide dismutase knockout on the oxidative stress parameters and survival of mouse erythrocyt. Cellular and Molecular Biology Letters, 2009, 14, 23-34.	2.7	17
122	Estimation of antioxidant capacity against pathophysiologically relevant oxidants using Pyrogallol Red. Biochemical and Biophysical Research Communications, 2009, 390, 659-661.	1.0	21
123	Evaluation of the cyto- and genotoxic activity of yerba mate (llex paraguariensis) in human lymphocytes in vitro. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2009, 679, 18-23.	0.9	21
124	Subadditive Interactions between Antioxidants in the Protection against Lipid Peroxidation. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2009, 64, 63-67.	0.6	0
125	The human pseudoxanthoma elasticum gene ABCC6 is transcriptionally regulated by PLAG family transcription factors. Human Genetics, 2008, 124, 451-463.	1.8	18
126	Antioxidative effects of melatonin administration in elderly primary essential hypertension patients. Journal of Pineal Research, 2008, 45, 312-317.	3.4	47

#	Article	IF	CITATIONS
127	N-chloroamino acids cause oxidative protein modifications in the erythrocyte membrane. Mechanisms of Ageing and Development, 2008, 129, 572-579.	2.2	30
128	The nitroxide antioxidant Tempol affects metal-induced cyto- and genotoxicity in human lymphocytes in vitro. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2008, 649, 7-14.	0.9	19
129	Oxidant-induced decrease of the expression of nucleolar organizer regions in pig lymphocytes can be useful for monitoring the cellular effects of oxidative stress. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2008, 653, 124-129.	0.9	7
130	A pharmacological solution for a conspecific conflict: ROS-mediated territorial aggression in sea anemones. Toxicon, 2008, 51, 1038-1050.	0.8	31
131	Efficacy of antioxidants in the yeast Saccharomyces cerevisiae correlates with their effects on protein thiols. Biochimie, 2008, 90, 1476-1485.	1.3	13
132	Interaction between antioxidants in assays of total antioxidant capacity. Food and Chemical Toxicology, 2008, 46, 2365-2368.	1.8	32
133	A role for yeast glutaredoxin genes in selenite-mediated oxidative stress. Fungal Genetics and Biology, 2008, 45, 1182-1187.	0.9	23
134	Changes of markers of oxidative stress during menstrual cycle. Redox Report, 2008, 13, 237-240.	1.4	15
135	Application of a <i>YHB1-GFP</i> reporter to detect nitrosative stress in yeast. Redox Report, 2008, 13, 161-171.	1.4	9
136	Is the Yeast a Relevant Model for Aging of Multicellular Organisms? An Insight from the Total Lifespan of Saccharomyces cerevisiae. Current Aging Science, 2008, 1, 159-165.	0.4	25
137	Protection of yeast lacking the Ure2 protein against the toxicity of heavy metals and hydroperoxides by antioxidants. Free Radical Research, 2007, 41, 580-590.	1.5	11
138	Does the cellular labile iron pool participate in the oxidation of 2′,7′-dichlorodihydrofluorescein?. Free Radical Research, 2007, 41, 563-570.	1.5	6
139	Metal chelators react also with reactive oxygen and nitrogen species. Biochemical and Biophysical Research Communications, 2007, 352, 522-525.	1.0	19
140	Indices of oxidative stress in pregnancy with fetal growth restriction. Free Radical Research, 2007, 41, 870-873.	1.5	59
141	Influence of diamond powder particles on human gene expression. Surface and Coatings Technology, 2007, 201, 6131-6135.	2.2	48
142	TOTAL ANTI-OXIDANT CAPACITY OF CELL CULTURE MEDIA. Clinical and Experimental Pharmacology and Physiology, 2007, 34, 781-786.	0.9	51
143	Potential relationship between glutathione metabolism and flocculation in the yeast Kluyveromyces lactis. FEMS Yeast Research, 2007, 7, 93-101.	1.1	5
144	The effect of growth medium on the antioxidant defense of Saccharomyces cerevisiae. Cellular and Molecular Biology Letters, 2007, 12, 448-56.	2.7	7

#	Article	IF	CITATIONS
145	Antioxidative and prooxidative effects of quercetin on A549 cells. Cell Biology International, 2007, 31, 1245-1250.	1.4	232
146	Expression of the human ABCC6 gene is induced by retinoids through the retinoid X receptor. Biochemical and Biophysical Research Communications, 2006, 350, 1082-1087.	1.0	19
147	Use of spectroscopic probes for detection of reactive oxygen species. Clinica Chimica Acta, 2006, 368, 53-76.	0.5	257
148	Does yeast shmooing mean a commitment to apoptosis?. Cell Biology International, 2006, 30, 205-209.	1.4	7
149	Interactions between carbon coatings and tissue. Surface and Coatings Technology, 2006, 201, 2117-2123.	2.2	29
150	Accumulation of cadmium ions in the methylotrophic yeast Hansenula polymorpha. BioMetals, 2006, 19, 593-599.	1.8	18
151	Accumulation of oxidative damage during replicative aging of the yeast Saccharomyces cerevisiae. Experimental Gerontology, 2006, 41, 813-818.	1.2	20
152	The influence of ferrylhemoglobin and methemoglobin on the human erythrocyte membrane. Redox Report, 2006, 11, 263-271.	1.4	17
153	Yeast flavohemoglobin protects against nitrosative stress and controls ferric reductase activity. Redox Report, 2006, 11, 231-239.	1.4	25
154	Relationship between the replicative age and cell volume in Saccharomyces cerevisiae Acta Biochimica Polonica, 2006, 53, 747-751.	0.3	24
155	Hypothesis: cell volume limits cell divisions Acta Biochimica Polonica, 2006, 53, 833-835.	0.3	21
156	Hypothesis: cell volume limits cell divisions. Acta Biochimica Polonica, 2006, 53, 833-5.	0.3	14
157	Relationship between the replicative age and cell volume in Saccharomyces cerevisiae. Acta Biochimica Polonica, 2006, 53, 747-51.	0.3	14
158	A novel test for identifying genes involved in aldehyde detoxification in the yeast. Increased sensitivity of superoxideâ€deficient yeast to aldehydes and their metabolic precursors. BioFactors, 2005, 24, 59-65.	2.6	9
159	Induction of apoptosis and modulation of production of reactive oxygen species in human endothelial cells by diphenyleneiodonium. Biochemical Pharmacology, 2005, 69, 1263-1273.	2.0	29
160	On the specificity of 4-amino-5-methylamino-2′,7′-difluorofluorescein as a probe for nitric oxide. Free Radical Biology and Medicine, 2005, 39, 327-335.	1.3	122
161	Food toxicity contributes to the beneficial effects of calorie restriction. Journal of Theoretical Biology, 2005, 233, 451-452.	0.8	4
162	Ascorbate abolishes auxotrophy caused by the lack of superoxide dismutase in Saccharomyces cerevisiae. Journal of Biotechnology, 2005, 115, 271-278.	1.9	21

#	Article	IF	Citations
163	Differential regulation of the human MRP2 and MRP3 gene expression by glucocorticoids. Journal of Steroid Biochemistry and Molecular Biology, 2005, 96, 229-234.	1.2	38
164	Replicative aging of the yeast does not require DNA replication. Biochemical and Biophysical Research Communications, 2005, 333, 138-141.	1.0	14
165	Antioxidants protect the yeastSaccharomyces cerevisiaeagainst hypertonic stress. Free Radical Research, 2005, 39, 365-371.	1.5	57
166	Pro-oxidative effects of Tempo in systems containing oxidants. Redox Report, 2004, 9, 153-159.	1.4	4
167	Low concentration of oxidant and nitric oxide donors stimulate proliferation of human endothelial cells in vitro. Cell Biology International, 2004, 28, 483-486.	1.4	62
168	Prooxidative effects of TEMPO on human erythrocytes. Cell Biology International, 2004, 28, 585-591.	1.4	7
169	Melatonin does not React Rapidly with Hydrogen Peroxide. Free Radical Research, 2004, 38, 1155-1158.	1.5	3
170	Limited Effectiveness of Antioxidants in the Protection of Yeast Defective in Antioxidant Proteins. Free Radical Research, 2004, 38, 1159-1165.	1.5	19
171	Ascorbate Restores Lifespan of Superoxide-dismutase Deficient Yeast. Free Radical Research, 2004, 38, 1019-1024.	1.5	22
172	Nanocrystalline diamond surface is resistant to bacterial colonization. Diamond and Related Materials, 2004, 13, 1761-1763.	1.8	81
173	Elevated exhalation of hydrogen peroxide and thiobarbituric acid reactive substances in patients with community acquired pneumonia. Respiratory Medicine, 2004, 98, 669-676.	1.3	47
174	Pro-oxidative activity of nitroxides in their reactions with glutathione. Free Radical Biology and Medicine, 2003, 35, 310-316.	1.3	40
175	Vacuolar accumulation and extracellular extrusion of electrophilic compounds by wild-type and glutathione-deficient mutants of the methylotrophic yeast Hansenula polymorpha. Cell Biology International, 2003, 27, 785-789.	1.4	5
176	Total antioxidant capacity. Advances in Clinical Chemistry, 2003, 37, 219-292.	1.8	184
177	Generation of Reactive Oxygen Species in Biological Systems. Comments on Modern Biology Part B, Comments on Toxicology, 2003, 9, 5-21.	0.2	16
178	Thiols are Main Determinants of Total Antioxidant Capacity of Cellular Homogenates. Free Radical Research, 2003, 37, 537-541.	1.5	72
179	MRP1-Transfected Cells do not Show Increased Resistance Against Oxidative Stress. Free Radical Research, 2003, 37, 189-195.	1.5	11
180	Biomarkers. Molecular Aspects of Medicine, 2002, 23, 101-208.	2.7	250

#	Article	IF	CITATIONS
181	Hypochlorous acid inhibits glutathione S-conjugate export from human erythrocytes. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1564, 479-486.	1.4	8
182	Effect of superoxide dismutase deficiency on the life span of the yeast Saccharomyces cerevisiae. An oxygen-independent role of Cu,Zn-superoxide dismutase. Biochimica Et Biophysica Acta - General Subjects, 2002, 1570, 199-202.	1.1	28
183	Hypochlorous acid-induced oxidative damage of human red blood cells: effects of tert-butyl hydroperoxide and nitrite on the HOCl reaction with erythrocytes. Bioelectrochemistry, 2002, 58, 127-135.	2.4	29
184	EDTA loses its antioxidant properties upon storage in buffer. Analytical Biochemistry, 2002, 311, 87-89.	1.1	4
185	Monitoring of MRP-like Activity in Human Erythrocytes: Inhibitory Effect of Isoflavones. Blood Cells, Molecules, and Diseases, 2001, 27, 894-900.	0.6	31
186	Hemoglobin can nitrate itself and other proteins. Biochimica Et Biophysica Acta - General Subjects, 2001, 1528, 97-100.	1.1	37
187	Decreased antioxidant defense during replicative aging of the yeastSaccharomyces cerevisiaestudied using the †baby machine†method. FEBS Letters, 2001, 492, 123-126.	1.3	10
188	PEROXYNITRITE ACTIVATES K+-Clâ^'COTRANSPORT IN HUMAN ERYTHROCYTES. Cell Biology International, 2001, 25, 1163-1165.	1.4	7
189	Hypochlorous acid damages erythrocyte membrane proteins and alters lipid bilayer structure and fluidity. Free Radical Biology and Medicine, 2001, 30, 363-369.	1.3	41
190	Light-dependent generation of reactive oxygen species in cell culture media. Free Radical Biology and Medicine, 2001, 30, 1418-1425.	1.3	213
191	2,7-DICHLOROFLUORESCIN OXIDATION AND REACTIVE OXYGEN SPECIES: WHAT DOES IT MEASURE?. Cell Biology International, 2000, 24, 757-760.	1.4	255
192	Oxidative stress during aging of stationary cultures of the yeast Saccharomyces cerevisiae. Free Radical Biology and Medicine, 2000, 28, 659-664.	1.3	164
193	Sensitivity of antioxidant-deficient yeast Saccharomyces cerevisiae to peroxynitrite and nitric oxide. Biochimica Et Biophysica Acta - General Subjects, 1999, 1472, 395-398.	1.1	13
194	Is the glutathione Sâ€conjugate pump a flippase?. IUBMB Life, 1998, 44, 97-105.	1.5	2
195	Menadione toxicity in Saccharomyces cerevisiae cells: Activation by conjugation with glutathione. IUBMB Life, 1998, 44, 747-759.	1.5	18
196	Luminol luminescence induced by oxidants in antioxidantâ€deficient yeasts Saccharomyces cerevisiae. IUBMB Life, 1998, 45, 191-203.	1.5	1
197	Simple determination of peroxyl radicalâ€trapping capacity. IUBMB Life, 1998, 46, 519-528.	1.5	23
198	Apoptosis-like, reversible changes in plasma membrane asymmetry and permeability, and transient modifications in mitochondrial membrane potential induced by curcumin in rat thymocytes. FEBS Letters, 1998, 433, 287-293.	1.3	114

#	Article	IF	CITATIONS
199	Radiation Inactivation Suggests That Human Multidrug Resistance-Associated Protein 1 Occurs as a Dimer in the Human Erythrocyte Membrane. Archives of Biochemistry and Biophysics, 1998, 354, 311-316.	1.4	26
200	Estimation of oxidative stress in Saccharomyces cerevisae with fluorescent probes. International Journal of Biochemistry and Cell Biology, 1997, 29, 1297-1301.	1.2	62
201	Peroxynitrite inhibits glutathione S-conjugate transport. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1325, 135-141.	1.4	9
202	Antioxidant and Prooxidant Properties of Captopril and Enalapril. Free Radical Biology and Medicine, 1997, 23, 729-735.	1.3	66
203	Decrease in Accessible Thiols as an Index of Oxidative Damage to Membrane Proteins. Free Radical Biology and Medicine, 1997, 23, 463-469.	1.3	76
204	Transport of glutathione S-conjugates in Escherichia coli. IUBMB Life, 1997, 43, 161-171.	1.5	6
205	Penetration of erythrocyte membrane by peroxynitrite: participation of the anion exchange protein. IUBMB Life, 1997, 43, 319-325.	1.5	5
206	Oxidative stress in plants. Acta Physiologiae Plantarum, 1997, 19, 47-64.	1.0	261
207	Effect of peroxynitrite on erythrocytes. Biochimica Et Biophysica Acta - General Subjects, 1996, 1291, 107-114.	1.1	64
208	TRANSPORT OF GLUTATHIONE S-CONJUGATES IN THE YEASTSSACCHAROMYCES CEREVISIAE. Cell Biology International, 1996, 20, 325-330.	1.4	18
209	The Copper Complex of Captopril is not a Superoxide Dismutase Mimic. Artefacts in DMPO Spin Trapping. Free Radical Research, 1996, 24, 391-396.	1.5	6
210	The action of iron on amino acid and protein peroxides. Biochemical Society Transactions, 1995, 23, 249S-249S.	1.6	6
211	Transport of bimane-S-glutathione in human erythrocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 1995, 1268, 279-284.	1.9	11
212	Low- and high-Km transport of dinitrophenyl glutathione in inside out vesicles from human erythrocytes. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1103, 115-119.	1.4	43
213	Erythrocyte Aging: Physical and Chemical Membrane Changes. Gerontology, 1991, 37, 33-67.	1.4	7 5
214	Interaction of ethanol and xylene in their effects on erythrocytes and other haematological parameters in the rat. Journal of Applied Toxicology, 1991, 11, 289-292.	1.4	6
215	Effect of Carminomycin on the Viability of Fibroblasts from Patients with Regular Trisomy 21. Free Radical Research Communications, 1990, 8, 79-83.	1.8	3
216	Modified osmotic fragility test for the laboratory diagnosis of hereditary spherocytosis. American Journal of Hematology, 1989, 31, 136-137.	2.0	5

#	Article	IF	CITATIONS
217	Studies on the effect of ethanol and/or toluene on rat erythrocytes. Journal of Applied Toxicology, 1988, 8, 369-372.	1.4	8
218	OUTCOME OF SPLENECTOMY IN RECESSIVELY AND DOMINANTLY INHERITED HEREDITARY SPHEROCYTOSIS: <i>To the Editor</i> :. European Journal of Haematology, 1988, 40, 190-190.	1.1	0
219	Aged erythrocytes exhibit decreased anion exchange. Mechanisms of Ageing and Development, 1987, 39, 245-250.	2.2	7
220	One-electron reduction of an anthracycline antibiotic carminomycin by a human erythrocyte redox chain. FEBS Letters, 1987, 219, 212-214.	1.3	7
221	Modified end-point glycerol hemolysis assay as a screening test for hereditary spherocytosis that requires no venipuncture. American Journal of Hematology, 1987, 26, 89-91.	2.0	3
222	Aging of the erythrocyte. 23. Changes in the permeation of spin-labeled electrolytes. American Journal of Hematology, 1983, 14, 377-379.	2.0	8
223	Aging of the erythrocyte. VII. on the possible causes of inactivation of red cell enzymes. Mechanisms of Ageing and Development, 1980, 13, 379-385.	2.2	19
224	Antioxidant capacity and hydrogen peroxide formation by black and orange carrots. Agricultural and Food Science, 0, , .	0.3	3