
Tatsushi Nakayama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2560348/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PTBP1-associated microRNA-1 and -133b suppress the Warburg effect in colorectal tumors. Oncotarget, 2016, 7, 18940-18952.	0.8	64
2	Importance of Proton-Coupled Electron Transfer from Natural Phenolic Compounds in Superoxide Scavenging. Chemical and Pharmaceutical Bulletin, 2015, 63, 967-973.	0.6	38
3	Aerobic Photooxidative Carbon–Carbon Bond Formation Between Tertiary Amines and Carbon Nucleophiles Using 2-Chloroanthra-9,10-quinone. Synlett, 2014, 25, 1453-1457.	1.0	24
4	Quinone–Hydroquinone π-Conjugated Redox Reaction Involving Proton-coupled Electron Transfer Plays an Important Role in Scavenging Superoxide by Polyphenolic Antioxidants. Chemistry Letters, 2010, 39, 162-164.	0.7	23
5	Concerted two-proton–coupled electron transfer from catechols to superoxide via hydrogen bonds. Electrochimica Acta, 2016, 208, 304-309.	2.6	23
6	Mechanistic Study on the Electrochemical Reduction of 9,10-Anthraquinone in the Presence of Hydrogen-bond and Proton Donating Additives. Analytical Sciences, 2012, 28, 257-265.	0.8	21
7	Formal Redox Potentials of Organic Molecules in Ionic Liquids on the Basis of Quaternary Nitrogen Cations as Adiabatic Electron Affinities. Journal of Physical Chemistry B, 2013, 117, 10834-10845.	1.2	12
8	Electrochemical and Mechanistic Study of Oxidative Degradation of Favipiravir by Electrogenerated Superoxide through Proton-Coupled Electron Transfer. ACS Omega, 2021, 6, 21730-21740.	1.6	12
9	Study on Redox Properties and Cytotoxicity of Anthraquinone Derivatives to Understand Antitumor Active Anthracycline Substances. Chemical and Pharmaceutical Bulletin, 2019, 67, 717-720.	0.6	8
10	Complementary Effect of Intra- and Intermolecular Hydrogen Bonds on Electron Transfer in β-Hydroxy-Anthraquinone Derivatives. Journal of Physical Chemistry B, 2020, 124, 848-860.	1.2	8
11	Electrochemical and Mechanistic Study of Superoxide Elimination by Mesalazine through Proton-Coupled Electron Transfer. Pharmaceuticals, 2021, 14, 120.	1.7	8
12	Electrochemical and Mechanistic Study of Reactivities of α-, β-, γ-, and δ-Tocopherol toward Electrogenerated Superoxide in N,N-Dimethylformamide through Proton-Coupled Electron Transfer. Antioxidants, 2022, 11, 9.	2.2	8
13	Anti-Oncogenic gem-Dihydroperoxides Induce Apoptosis in Cancer Cells by Trapping Reactive Oxygen Species. International Journal of Molecular Sciences, 2016, 17, 71.	1.8	7
14	Downâ€regulation of aquaporin 9 gene transcription by 10â€hydroxyâ€2â€decenoic acid: A major fatty acid in royal jelly. Food Science and Nutrition, 2019, 7, 3819-3826.	1.5	5
15	Electrochemical and Mechanistic Study of Superoxide Scavenging by Pyrogallol in N,N-Dimethylformamide through Proton-Coupled Electron Transfer. Electrochem, 2022, 3, 115-128.	1.7	5
16	Oxidation of Guanosine to the Imidazolone Derivative via Proton-coupled Electron Transfer to Hydroperoxy Radical Derived from Superoxide. Chemistry Letters, 2011, 40, 268-269.	0.7	4
17	Reactivities of Hydroxycinnamic Acid Derivatives Involving Caffeic Acid toward Electrogenerated Superoxide in N,N-Dimethylformamide. Electrochem, 2022, 3, 347-360.	1.7	4