S Lori Bridal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/25602/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Perfluorooctyl Bromide Polymeric Capsules as Dual Contrast Agents for Ultrasonography and Magnetic Resonance Imaging. Advanced Functional Materials, 2008, 18, 2963-2971.	14.9	114
2	Ultrasonic contrast agent shell rupture detected by inertial cavitation and rebound signals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 126-136.	3.0	94
3	Blood Flow Quantification with Contrast-enhanced US: "Entrance in the Section― Phenomenon—Phantom and Rabbit Study. Radiology, 2003, 228, 473-479.	7.3	83
4	Clinical relevance of contrast-enhanced ultrasound in monitoring anti-angiogenic therapy of cancer: Current status and perspectives. Critical Reviews in Oncology/Hematology, 2010, 73, 202-212.	4.4	64
5	Noninvasive Contrast-enhanced US Quantitative Assessment of Tumor Microcirculation in a Murine Model: Effect of Discontinuing Anti-VEGF Therapy. Radiology, 2010, 254, 420-429.	7.3	62
6	RANKL Induces Organized Lymph Node Growth by Stromal Cell Proliferation. Journal of Immunology, 2012, 188, 1245-1254.	0.8	40
7	Characterization of atherosclerotic plaque components by high resolution quantitative MR and US imaging. Journal of Magnetic Resonance Imaging, 1998, 8, 622-629.	3.4	30
8	Multiparametric Attenuation and Backscatter Images for Characterization of Carotid Plaque. Ultrasonic Imaging, 2000, 22, 20-34.	2.6	30
9	Fast in vivo imaging of amyloid plaques using μ-MRI Gd-staining combined with ultrasound-induced blood–brain barrier opening. NeuroImage, 2013, 79, 288-294.	4.2	28
10	Echo-Power Estimation from Log-Compressed Video Data in Dynamic Contrast-Enhanced Ultrasound Imaging. Ultrasound in Medicine and Biology, 2013, 39, 1826-1837.	1.5	27
11	Ultrasonic Backscatter and Attenuation (11–27 MHz) Variation with Collagen Fiber Distribution in Ex Vivo Human Dermis. Ultrasonic Imaging, 2006, 28, 23-40.	2.6	25
12	Parametric analysis of carotid plaque using a clinical ultrasound imaging system. Ultrasound in Medicine and Biology, 2003, 29, 1521-1530.	1.5	23
13	VEGFR2-Targeted Contrast-Enhanced Ultrasound to Distinguish between Two Anti-Angiogenic Treatments. Ultrasound in Medicine and Biology, 2015, 41, 2202-2211.	1.5	23
14	Modeling the envelope statistics of three-dimensional high-frequency ultrasound echo signals from dissected human lymph nodes. Japanese Journal of Applied Physics, 2014, 53, 07KF22.	1.5	20
15	Real-time Chirp-Coded Imaging With a Programmable Ultrasound Biomicroscope. IEEE Transactions on Biomedical Engineering, 2010, 57, 654-664.	4.2	17
16	Correlation and Agreement Between Contrast-Enhanced Ultrasonography and Perfusion Computed Tomography forAAssessment of Liver Metastases from Endocrine Tumors:ANormalization Enhances Correlation. Ultrasound in Medicine and Biology, 2012, 38, 953-961.	1.5	16
17	Optimization of attenuation estimation in reflection for in vivo human dermis characterization at 20 MHz. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50, 408-418.	3.0	15
18	Reproducibility of Contrast-Enhanced Ultrasound in Mice with Controlled Injection. Molecular Imaging and Biology, 2016, 18, 651-658.	2.6	15

S LORI BRIDAL

#	Article	IF	CITATIONS
19	InÂVivo Multiparametric Ultrasound Imaging of Structural and Functional Tumor Modifications during Therapy. Ultrasound in Medicine and Biology, 2017, 43, 2000-2012.	1.5	14
20	Local Transverse-Slice-Based Level-Set Method for Segmentation of 3-D High-Frequency Ultrasonic Backscatter From Dissected Human Lymph Nodes. IEEE Transactions on Biomedical Engineering, 2017, 64, 1579-1591.	4.2	11
21	Quantification of tumor perfusion using dynamic contrast-enhanced ultrasound: impact of mathematical modeling. Physics in Medicine and Biology, 2017, 62, 1113-1125.	3.0	10
22	Dual-mode registration of dynamic contrast-enhanced ultrasound combining tissue and contrast sequences. Ultrasonics, 2014, 54, 1289-1299.	3.9	7
23	High-frequency (20 to 40 MHz) acoustic response of liquid-filled nanocapsules. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 5-15.	3.0	7
24	Level-set segmentation of 2D and 3D ultrasound data using local gamma distribution fitting energy. , 2015, , .		6
25	Optimizing an Ultrasound Contrast Agent's Stability Using In Vitro Attenuation Measurements. Investigative Radiology, 2002, 37, 672-679.	6.2	5
26	Ultrasound Biomicroscopy: A Powerful Tool Probing Murine Lymph Node Size in vivo. Ultrasound in Medicine and Biology, 2009, 35, 1209-1216.	1.5	3
27	Detection of early therapeutic response with dynamic contrast enhanced ultrasound using a perfusion clustering algorithm. , 2014, , .		3
28	High-Contrast and -Resolution 3-D Ultrasonography with a Clinical Linear Transducer Array Scanned in a Rotate-Translate Geometry. Applied Sciences (Switzerland), 2021, 11, 493.	2.5	3
29	Spectral and temporal signal modifications occuring between stable and transient inertial cavitation. , 2008, , .		2
30	Implementation of a controlled injection system for dynamic contrast-enhanced ultrasonography. , 2012, , .		2
31	Automatic motion estimation using flow parameters for dynamic contrast-enhanced ultrasound. Physics in Medicine and Biology, 2015, 60, 2117-2133.	3.0	2
32	Impact of Recirculation in Dynamic Contrast-Enhanced Ultrasound: A Simulation Study. Irbm, 2017, 38, 179-189.	5.6	2
33	Monitoring Dual VEGF Inhibition in Human Pancreatic Tumor Xenografts With Dynamic Contrast-Enhanced Ultrasound. Technology in Cancer Research and Treatment, 2020, 19, 153303381988689.	1.9	2
34	A multiplicative model to improve microvascular flow evaluation in the context of dynamic contrast-enhanced ultrasound (DCE-US). , 2013, , .		1
35	Complementarity of shear wave elastography and dynamic contrast-enhanced ultrasound to discriminate tumor modifications during antiangiogenic and cytotoxic therapy. , 2014, , .		1
36	Comparison of global and local estimations of ultrasonic parameters at 20 MHz: in vivo normal skin. , 0, , .		0

S LORI BRIDAL

#	Article	IF	CITATIONS
37	In vivo normal human dermis characterization by 20-MHz ultrasound backscatter. , 0, , .		0
38	Ultrasound Imaging. , 0, , 79-101.		0
39	Nonlinear, detection of biodegradable, experimental nanoparticles using a high frequency ultrasound prototype. , 2010, , .		0
40	Comparison of the acoustic response of liquid-PFOB and solid-core nanoparticles between 20 and 40 MHz. , 2011, , .		0
41	Differentiation of vascular distribution and flow patterns in tumors with Dynamic Contrast-Enhanced Ultrasound (DCE-US) perfusion maps. , 2013, , .		0
42	Non-Invasive Ultrasonic Description of Tumor Evolution. Cancers, 2021, 13, 4560.	3.7	0
43	Imagerie fonctionnelle de contraste. , 2007, , 61-72.		0