Bruna Corradetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2560003/publications.pdf

Version: 2024-02-01

		201674	276875
51	1,740	27	41
papers	citations	h-index	g-index
			2672
53	53	53	2659
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Translating Stem Cell-Based Regenerative Approaches into Clinical Therapies for Musculoskeletal Tissue Repair. Stem Cells International, 2021, 2021, 1-2.	2.5	О
2	Amphibian regeneration and mammalian cancer: Similarities and contrasts from an evolutionary biology perspective. BioEssays, 2021, 43, e2000339.	2.5	5
3	Biomimetic and immunomodulatory therapeutics as an alternative to natural exosomes for vascular and cardiac applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 35, 102385.	3.3	11
4	Biomimetic immunomodulation strategies for effective tissue repair and restoration. Advanced Drug Delivery Reviews, 2021, 179, 113913.	13.7	37
5	Assessment of the immune landscapes of advanced ovarian cancer in an optimized in vivo model. Clinical and Translational Medicine, 2021, 11, e551.	4.0	3
6	Immunotherapeutic Transport Oncophysics: Space, Time, and Immune Activation in Cancer. Trends in Cancer, 2020, 6, 40-48.	7.4	12
7	Neovascularized implantable cell homing encapsulation platform with tunable local immunosuppressant delivery for allogeneic cell transplantation. Biomaterials, 2020, 257, 120232.	11.4	31
8	Immune (Cell) Derived Exosome Mimetics (IDEM) as a Treatment for Ovarian Cancer. Frontiers in Cell and Developmental Biology, 2020, 8, 553576.	3.7	37
9	Bioactive Immunomodulatory Compounds: A Novel Combinatorial Strategy for Integrated Medicine in Oncology? BAIC Exposure in Cancer Cells. Integrative Cancer Therapies, 2019, 18, 153473541986690.	2.0	9
10	Nanotechnology and Immunotherapy in Ovarian Cancer: Tracing New Landscapes. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 636-646.	2.5	24
11	Hyaluronic acid coatings as a simple and efficient approach to improve MSC homing toward the site of inflammation. Scientific Reports, 2017, 7, 7991.	3.3	64
12	Immune tuning scaffold for the local induction of a pro-regenerative environment. Scientific Reports, 2017, 7, 17030.	3.3	31
13	Heparan Sulfate: A Potential Candidate for the Development of Biomimetic Immunomodulatory Membranes. Frontiers in Bioengineering and Biotechnology, 2017, 5, 54.	4.1	6
14	Characterization of Mesenchymal Stem Cells from Human Cortical Bone. International Journal of Translational Science, 2016, 2016, 71-86.	0.2	0
15	Biomimetic Concealing of PLGA Microspheres in a 3D Scaffold to Prevent Macrophage Uptake. Small, 2016, 12, 1479-1488.	10.0	23
16	Biomimetic collagenous scaffold to tune inflammation by targeting macrophages. Journal of Tissue Engineering, 2016, 7, 204173141562466.	5.5	62
17	Tissue Engineering: Biomimetic Concealing of PLGA Microspheres in a 3D Scaffold to Prevent Macrophage Uptake (Small 11/2016). Small, 2016, 12, 1394-1394.	10.0	0
18	Microvesicles secreted from equine amniotic-derived cells and their potential role in reducing inflammation in endometrial cells in an in-vitro model. Stem Cell Research and Therapy, 2016, 7, 169.	5.5	43

#	Article	IF	CITATIONS
19	Effects of platelet-rich plasma in a model of bovine endometrial inflammation in vitro. Reproductive Biology and Endocrinology, 2016, 14, 58.	3.3	57
20	Chondroitin Sulfate Immobilized on a Biomimetic Scaffold Modulates Inflammation While Driving Chondrogenesis. Stem Cells Translational Medicine, 2016, 5, 670-682.	3.3	76
21	Does the Bovine Pre-Ovulatory Follicle Harbor Progenitor Stem Cells?. Cellular Reprogramming, 2016, 18, 116-126.	0.9	2
22	One-pot synthesis of pH-responsive hybrid nanogel particles for the intracellular delivery of small interfering RNA. Biomaterials, 2016, 87, 57-68.	11.4	67
23	Equine Amniotic Microvesicles and Their Anti-Inflammatory Potential in a Tenocyte Model In Vitro. Stem Cells and Development, 2016, 25, 610-621.	2.1	46
24	IL-4 Release from a Biomimetic Scaffold for the Temporally Controlled Modulation of Macrophage Response. Annals of Biomedical Engineering, 2016, 44, 2008-2019.	2.5	54
25	Nanotechnology for mesenchymal stem cell therapies. Journal of Controlled Release, 2016, 240, 242-250.	9.9	29
26	Decreased hernia recurrence using autologous platelet-rich plasma (PRP) with Stratticeâ,,¢ mesh in a rodent ventral hernia model. Surgical Endoscopy and Other Interventional Techniques, 2016, 30, 3239-3249.	2.4	25
27	Leptin and leptin receptor are detectable in equine spermatozoa but are not involved in in vitro fertilisation. Reproduction, Fertility and Development, 2016, 28, 574.	0.4	8
28	Enhanced osteogenic potential of mesenchymal stem cells from cortical bone: a comparative analysis. Stem Cell Research and Therapy, 2015, 6, 203.	5.5	44
29	Peculiarity of Porcine Amniotic Membrane and Its Derived Cells: A Contribution to the Study of Cell Therapy from a Large Animal Model. Cellular Reprogramming, 2015, 17, 472-483.	0.9	9
30	Osteoprogenitor Cells from Bone Marrow and Cortical Bone: Understanding How the Environment Affects Their Fate. Stem Cells and Development, 2015, 24, 1112-1123.	2.1	31
31	Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation. Biomaterials, 2015, 62, 128-137.	11.4	145
32	Potential Avoidance of Adverse Analgesic Effects Using a Biologically "Smart―Hydrogel Capable of Controlled Bupivacaine Release. Journal of Pharmaceutical Sciences, 2014, 103, 3724-3732.	3.3	22
33	Amniotic Membrane-Derived Mesenchymal Cells and Their Conditioned Media: Potential Candidates for Uterine Regenerative Therapy in the Horse. PLoS ONE, 2014, 9, e111324.	2.5	41
34	Characteristics of equine mesenchymal stem cells derived from amnion and bone marrow: <i>In vitro</i> proliferative and multilineage potential assessment. Equine Veterinary Journal, 2013, 45, 737-744.	1.7	42
35	Investigating the efficacy of amnion-derived compared with bone marrow–derived mesenchymal stromal cells in equine tendon and ligament injuries. Cytotherapy, 2013, 15, 1011-1020.	0.7	68
36	Bis-(2-ethylexhyl) phthalate impairs spermatogenesis in zebrafish (Danio rerio). Reproductive Biology, 2013, 13, 195-202.	1.9	42

#	Article	IF	CITATIONS
37	A novel inÂvitro sperm head decondensation protocol for rapid flow cytometric measurement of deoxyribonucleic acid content. Fertility and Sterility, 2013, 99, 1857-1861.	1.0	2
38	Molecular characterization and in vitro differentiation of feline progenitor-like amniotic epithelial cells. Stem Cell Research and Therapy, 2013, 4, 133.	5 . 5	37
39	Mesenchymal stem cells from amnion and amniotic fluid in the bovine. Reproduction, 2013, 145, 391-400.	2.6	68
40	A1-3 chromosomal translocations in Italian populations of the peach potato aphid Myzus persicae (Sulzer) not linked to esterase-based insecticide resistance. Bulletin of Entomological Research, 2013, 103, 278-285.	1.0	13
41	Tenogenic Differentiation of Equine Mesenchymal Progenitor Cells under Indirect Co-Culture. International Journal of Artificial Organs, 2012, 35, 996-1005.	1.4	22
42	Characterization and potential applications of progenitor-like cells isolated from horse amniotic membrane. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 622-635.	2.7	92
43	Paracrine signalling events in embryonic stem cell renewal mediated by affinity targeted nanoparticles. Biomaterials, 2012, 33, 6634-6643.	11.4	30
44	Tenogenic differentiation of equine mesenchymal progenitor cells under indirect co-culture. International Journal of Artificial Organs, 2012, 35, 996-1005.	1.4	21
45	Fetal adnexa derived stem cells from domestic animal: progress and perspectives. Theriogenology, 2011, 75, 1400-1415.	2.1	55
46	Size-sieved subpopulations of mesenchymal stem cells from intervascular and perivascular equine umbilical cord matrix. Cell Proliferation, 2011, 44, 330-342.	5.3	46
47	Comparison of equine bone marrow-, umbilical cord matrix and amniotic fluid-derived progenitor cells. Veterinary Research Communications, 2011, 35, 103-121.	1.6	73
48	Characterization and differentiation of equine tendon-derived progenitor cells. Journal of Biological Regulators and Homeostatic Agents, 2011, 25, S75-84.	0.7	40
49	Morphometric characteristics and chromatin integrity of spermatozoa in three Italian dog breeds. Journal of Small Animal Practice, 2010, 51, 624-627.	1.2	18
50	386 HORSE AMNION: A SOURCE OF MESENCHYMAL (AMSC) AND EPITHELIAL STEM CELLS. Reproduction, Fertility and Development, 2010, 22, 349.	0.4	6
51	Bisursodeoxycholate(ethylenediamine)platinum(ii): a new autofluorescent compound. Cytotoxic activity and cell cycle analysis in ovarian and hematological cell lines. Dalton Transactions, 2008, , 6159.	3.3	10