SÅ,awomir Wojtulewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/255988/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel hydrogen-bonding <i>N</i> -oxide–sulfonamide–nitro N—HO synthon determining the architecture of benzenesulfonamide cocrystals. Acta Crystallographica Section C, Structural Chemistry, 2022, 78, 7-13.	0.5	1
2	Novel melamine – salicylic salt solvates and co-crystals; an analysis of the energetic parameters of the intermolecular hydrogen bonds stabilizing the crystal structure. CrystEngComm, 2022, 24, 5688-5696.	2.6	1
3	The role of sulfur interactions in crystal architecture: experimental and quantum theoretical studies on hydrogen, halogen, and chalcogen bonds in trithiocyanuric acid–pyridine <i>N</i> -oxide co-crystals. CrystEngComm, 2021, 23, 324-334.	2.6	13
4	Crystal Structure and Properties of an Energetic Perchlorate Complex Compound with Copper and Cytosine. Propellants, Explosives, Pyrotechnics, 2021, 46, 737-741.	1.6	2
5	A Useful Synthetic Route to <i>N</i> -Nonsubstituted Succinimides via Light-Induced Degradation of Metallocarbonyl Complexes. Organometallics, 2021, 40, 663-673.	2.3	4
6	Trithiocyanuric acid: novel cocrystals and analysis of its tautomeric forms. Acta Crystallographica Section C, Structural Chemistry, 2021, 77, 49-55.	0.5	4
7	Carbon coating of air-sensitive insulating transition metal fluorides: An example study on α-Li3FeF6 high-performance cathode for lithium ion batteries. Journal of Materials Science and Technology, 2020, 55, 107-115.	10.7	6
8	The influence of selected transition metal ions on the structure, thermal and microbiological properties of pyrazine-2-carboxylic acid. Polyhedron, 2020, 175, 114173.	2.2	8
9	A new look at two polymorphic crystal structures of dibenzoylmethane: relationship between the crystal packing and the hydrogen atom position revealed by quantum chemistry and quantum crystallography methods. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2020, 76, 957-966.	1.1	2
10	C—BrS halogen bonds in novel thiourea <i>N</i> -oxide cocrystals: analysis of energetic and QTAIM parameters. Acta Crystallographica Section C, Structural Chemistry, 2020, 76, 170-176.	0.5	7
11	Inverse electronâ€demand Dielsâ€Alder (iEDDA) bioorthogonal conjugation of halfâ€sandwich transition metallocarbonyl entities to a model protein. Applied Organometallic Chemistry, 2020, 34, e5507.	3.5	2
12	Two New Cocrystals of the Dipicolinic Acid. Hirshfeld Atom Refinement of Crystal Structures and Quantum Theory of Atoms in Molecules Analysis of Molecular Complexes. Crystal Growth and Design, 2019, 19, 6860-6872.	3.0	5
13	Thermal, spectroscopic, X-ray and theoretical studies of metal complexes (sodium, manganese, copper,) Tj ETQq1 Thermal Analysis and Calorimetry, 2019, 138, 2813-2837.	1 0.7843 3.6	14 rgBT /Ove 12
14	Oxidation of 2-mercaptopyridine N-oxide upon iodine agent: structural and FT-IR studies on charge-assisted hydrogen bonds CAHB(+) and l…l halogen interactions in 2,2′-dithiobis(pyridine N-oxide) ionic cocrystal. Structural Chemistry, 2019, 30, 827-833.	2.0	10
15	Spectroscopic (IR, Raman, NMR), thermal and theoretical (DFT) study of alkali metal dipicolinates (2,6) and quinolinates (2,3). Arabian Journal of Chemistry, 2019, 12, 4414-4426.	4.9	5
16	Crystal structure of 3,6-bis(pyridin-2-yl)-1,4-dihydro-1,2,4,5-tetrazine. Acta Crystallographica Section E: Crystallographic Communications, 2019, 75, 86-88.	0.5	0
17	<i>N</i> -Oxide– <i>N</i> -oxide interactions and ClCl halogen bonds in pentachloropyridine <i>N</i> -oxide: the many-body approach to interactions in the crystal state. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 113-119.	0.5	12
18	Racemic crystals of trolox derivatives compared to their chiral counterparts: Structural studies using solid-state NMR, DFT calculations and X-ray diffraction. Journal of Molecular Structure, 2018, 1156, 290-300.	3.6	6

#	Article	IF	CITATIONS
19	Does Proton Transfer Always Take Place in Molecules of 2-Substituted Pyridine- <i>N</i> -oxides? The Case of 2-Aminopyridine- <i>N</i> -oxide Crystal Structure and Its 3,5-Dinitrobenzoic Acid Co-crystal. Crystal Growth and Design, 2018, 18, 7373-7382.	3.0	9
20	Carbamohydrazonothioate derivative—experimental and theoretical explorations of the crystal and molecular structure. Structural Chemistry, 2017, 28, 801-812.	2.0	1
21	Magnetic nanoparticles with chelating shells prepared by RAFT/MADIX polymerization. New Journal of Chemistry, 2016, 40, 9223-9231.	2.8	11
22	Thermal, spectroscopic (IR, Raman, NMR) and theoretical (DFT) studies of alkali metal complexes with pyrazinecarboxylate and 2,3-pyrazinedicarboxylate ligands. Journal of Thermal Analysis and Calorimetry, 2016, 126, 205-224.	3.6	17
23	Synthesis and characterization of new M(II) carbonyl complexes (MÂ=ÂFe or Ru) including an η1-N-maleimidato ligand. Reactivity studies with biological thiols. Journal of Organometallic Chemistry, 2016, 801, 101-110.	1.8	11
24	Oxa-Michael reaction of metallocarbonyl complexes bearing the maleimidato ligand. Reactivity studies with selected hydroxy compounds. Polyhedron, 2016, 107, 38-47.	2.2	5
25	The experimental and theoretical study on the influence of alkali metals on the electronic charge distribution in five-membered aromatic acids (2-thiophenecarboxylic, 2-furanecarboxylic and) Tj ETQq1 1 0.7843	14 2g BT/C	Overslock 10 Ti
26	Performance of MÃ,ller-Plesset second-order perturbation theory and density functional theory in predicting the interaction between stannylenes and aromatic molecules. Journal of Molecular Modeling, 2015, 21, 41.	1.8	28
27	<i>N</i> -Oxide as a Proton Accepting Group in Multicomponent Crystals: X-ray and Theoretical Studies on New <i>p</i> -Nitropyridine- <i>N</i> -oxide Co-Crystals. Crystal Growth and Design, 2015, 15, 5802-5815.	3.0	22
28	Theoretical (in B3LYP/6-3111++G** level), spectroscopic (FT-IR, FT-Raman) and thermogravimetric studies of gentisic acid and sodium, copper(II) and cadmium(II) gentisates. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 132, 713-725.	3.9	13
29	Intermolecular Interactions of Trichloromethyl Group in the Crystal State, the Case of 2-Trichloromethyl-3 <i>H</i> -4-quinazoline Polymorphs and 1-Methyl-2-trichloroacetylpyrrole–Hirshfeld Surface Analysis of Chlorine Halogen Bonding. Crystal Growth and Design, 2013, 13, 3913-3924.	3.0	19
30	Spectroscopic and theoretical studies on the aromaticity of pyrrol-2-yl-carbonyl conformers. Journal of Molecular Structure, 2013, 1041, 92-99.	3.6	7
31	Spectroscopic (FT-IR, FT-Raman and 1H and 13C NMR) and theoretical in MP2/6-311++C(d,p) and B3LYP/6-311++C(d,p) levels study of benzenesulfonic acid and alkali metal benzenesulfonates. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 100, 41-50.	3.9	28
32	(2R)-8-Benzyl-2-[(S)-hydroxy(phenyl)methyl]-8-azabicyclo[3.2.1]octan-3-one. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o149-o150.	0.2	4
33	Effect of alkali metal ions on the pyrrole and pyridine π-electron systems in pyrrole-2-carboxylate and pyridine-2-carboxylate molecules: FT-IR, FT-Raman, NMR and theoretical studies. Journal of Molecular Structure, 2011, 993, 448-458.	3.6	19
34	Intramolecular Double Proton Transfer from 2-Hydroxy-2-iminoacetic Acid to 2-Amino-2-oxoacetic Acid. Journal of Organic Chemistry, 2010, 75, 1419-1426.	3.2	11
35	Intramolecular hydrogen bonds in 2-iminoacetic acid and its derivatives – DFT calculations and â€~Atoms in Molecules' analysis. Computational and Theoretical Chemistry, 2009, 905, 34-39.	1.5	11
36	Experimental (FT-IR, FT-Raman, 1H NMR) and theoretical study of magnesium, calcium, strontium, and barium picolinates. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 64, 24-33.	3.9	32

#	ARTICLE	IF	CITATIONS
37	Blue-shifting C–H…Y intramolecular hydrogen bonds – DFT and AIM analyses. Chemical Physics, 2005, 309, 183-188.	1.9	52
38	Different donors and acceptors for intramolecular hydrogen bonds. Chemical Physics Letters, 2003, 378, 388-394.	2.6	65
39	Ab initio and AIM studies on intramolecular dihydrogen bonds. Journal of Molecular Structure, 2003, 645, 287-294.	3.6	56
40	DFT and AIM studies on two-ring resonance assisted hydrogen bonds. Computational and Theoretical Chemistry, 2003, 621, 285-291.	1.5	60
41	Unconventional F–Hâ<ï€ hydrogen bonds — ab initio and AIM study. Journal of Molecular Structure, 2002, 605, 235-240.	3.6	40