
Marylene Mougel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2559824/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Probing the structure of RNAs in solution. Nucleic Acids Research, 1987, 15, 9109-9128.	14.5	751
2	Dimerization of human immunodeficiency virus (type 1) RNA: stimulation by cations and possible mechanism. Nucleic Acids Research, 1991, 19, 2349-2357.	14.5	202
3	Retroviral Genomic RNAs Are Transported to the Plasma Membrane by Endosomal Vesicles. Developmental Cell, 2003, 5, 161-174.	7.0	138
4	Effect of dimerization on the conformation of the encapsidation Psi domain of Moloney murine leukemia virus RNA. Journal of Molecular Biology, 1992, 223, 205-220.	4.2	118
5	Binding of Escherichia coli ribosomal protein S8 to 16 S rRNA. Journal of Molecular Biology, 1987, 198, 91-107.	4.2	99
6	HIV controls the selective packaging of genomic, spliced viral and cellular RNAs into virions through different mechanisms. Nucleic Acids Research, 2007, 35, 2695-2704.	14.5	85
7	Cross-linking of initiation factor IF3 toEscherichia coli30S ribosomal subunit by trans-dlamminedichloroplatinum(II): characterization of two cross-linking sites in 16S rRNA; a possible way of functioning for IF3. Nucleic Acids Research, 1986, 14, 4803-4821.	14.5	81
8	An analytical study of the dimerization ofin vitrogenerated RNA of Moloney murine leukemia virus MoMuLV. Nucleic Acids Research, 1990, 18, 7287-7292.	14.5	74
9	cis-active structural motifs involved in specific encapsidation of Moloney murine leukemia virus RNA. Journal of Virology, 1996, 70, 5043-5050.	3.4	71
10	Target site of Escherichia coli ribosomal protein S15 on its messenger RNA. Journal of Molecular Biology, 1990, 211, 415-426.	4.2	69
11	Intracellular HIV-1 Gag localization is impaired by mutations in the nucleocapsid zinc fingers. Retrovirology, 2007, 4, 54.	2.0	68
12	Characterization of laccase-grafted ceramic membranes for pharmaceuticals degradation. Journal of Membrane Science, 2015, 476, 384-393.	8.2	68
13	Conformational analysis of the 5' leader and the gag initiation site of Mo-MuLV RNA and allosteric transitions induced by dimerization. Nucleic Acids Research, 1993, 21, 4677-4684.	14.5	64
14	A role for two hairpin structures as a core RNA encapsidation signal in murine leukemia virus virions. Journal of Virology, 1997, 71, 8061-8065.	3.4	59
15	Role of HIV-1 RNA and protein determinants for the selective packaging of spliced and unspliced viral RNA and host U6 and 7SL RNA in virus particles. Nucleic Acids Research, 2011, 39, 8915-8927.	14.5	58
16	Dimerization of MoMuLV Genomic RNA:Â Redefinition of the Role of the Palindromic Stemâ^Loop H1 (278â^'303) and New Roles for Stemâ^'Loops H2 (310â^'352) and H3 (355â^'374). Biochemistry, 1998, 37, 6077-	-6085.	54
17	Nucleocapsid mutations turn HIV-1 into a DNA-containing virus. Nucleic Acids Research, 2008, 36, 2311-2319.	14.5	53
18	When is it time for reverse transcription to start and go?. Retrovirology, 2009, 6, 24.	2.0	51

MARYLENE MOUGEL

#	Article	IF	CITATIONS
19	Higher-order structure of domain III in Escherichia coli 16S ribosomal RNA, 30S subunit and 70S ribosome. Biochimie, 1987, 69, 1081-1096.	2.6	50
20	Cell biology of retroviral RNA packaging. RNA Biology, 2011, 8, 572-580.	3.1	49
21	Binding of Escherichia coli ribosomal protein S8 to 16S rRNA: kinetic and thermodynamic characterization. Biochemistry, 1986, 25, 2756-2765.	2.5	45
22	Sensing of HIV-1 Entry Triggers a Type I Interferon Response in Human Primary Macrophages. Journal of Virology, 2017, 91, .	3.4	42
23	Minimal 16S rRNA binding site and role of conserved nucleotides in Escherichia coli ribosomal protein S8 recognition. FEBS Journal, 1993, 215, 787-792.	0.2	41
24	TheE.coli16S rRNA binding site of ribosomal protein S15: higher-order structure in the absence and in the presence of the protein. Nucleic Acids Research, 1988, 16, 2825-2839.	14.5	36
25	Trans-diamminedichloroplatinum(II), a reversible RNA-protein cross-linking agent. Application to the ribosome and to an aminoacyl-tRNA synthetase/tRNA complex. Biochemistry, 1987, 26, 5200-5208.	2.5	35
26	Imaging HIV-1 RNA dimerization in cells by multicolor super-resolution and fluctuation microscopies. Nucleic Acids Research, 2016, 44, 7922-7934.	14.5	35
27	Nanoscale organization of tetraspanins during HIV-1 budding by correlative dSTORM/AFM. Nanoscale, 2019, 11, 6036-6044.	5.6	35
28	Probing the phosphates of the Escherichia coli ribosomal 16S RNA in its naked form, in the 30S subunit, and in the 70S ribosome. Biochemistry, 1989, 28, 5847-5855.	2.5	32
29	Fully-spliced HIV-1 RNAs are reverse transcribed with similar efficiencies as the genomic RNA in virions and cells, but more efficiently in AZT-treated cells. Retrovirology, 2007, 4, 30.	2.0	31
30	In cell mutational interference mapping experiment (in cell MIME) identifies the 5′ polyadenylation signal as a dual regulator of HIV-1 genomic RNA production and packaging. Nucleic Acids Research, 2018, 46, e57-e57.	14.5	31
31	Role of conserved nucleotides in building the 16S rRNA binding site ofE.coliribosomal protein S8. Nucleic Acids Research, 1994, 22, 3708-3714.	14.5	29
32	A Novel Subgenomic Murine Leukemia Virus RNA Transcript Results from Alternative Splicing. Journal of Virology, 2000, 74, 3709-3714.	3.4	29
33	The Highly Structured Encapsidation Signal of MuLV RNA is Involved in the Nuclear Export of its Unspliced RNA. Journal of Molecular Biology, 2005, 354, 1118-1128.	4.2	29
34	The conserved N-terminal basic residues and zinc-finger motifs of HIV-1 nucleocapsid restrict the viral cDNA synthesis during virus formation and maturation. Nucleic Acids Research, 2008, 36, 4745-4753.	14.5	29
35	HIV-1 nucleocapsid and ESCRT-component Tsg101 interplay prevents HIV from turning into a DNA-containing virus. Nucleic Acids Research, 2015, 43, 336-347.	14.5	27
36	Uracil DNA Glycosylase 2 negatively regulates HIV-1 LTR transcription. Nucleic Acids Research, 2009, 37, 6008-6018.	14.5	24

MARYLENE MOUGEL

#	Article	IF	CITATIONS
37	Modified nucleotides of tRNA Pro restrict interactions in the binary Primer/Template complex of M-MuLV 1 1Edited by J. Karn. Journal of Molecular Biology, 1998, 275, 731-746.	4.2	23
38	Intracellular assembly and budding of the Murine Leukemia Virus in infected cells. Retrovirology, 2006, 3, 12.	2.0	23
39	NXF1 and CRM1 nuclear export pathways orchestrate nuclear export, translation and packaging of murine leukaemia retrovirus unspliced RNA. RNA Biology, 2020, 17, 528-538.	3.1	23
40	The ribosomal protein S8 from Thermus thermophilus VK1. Sequencing of the gene, overexpression of the protein in Escherichia coli and interaction with rRNA. FEBS Journal, 1994, 223, 437-445.	0.2	21
41	A new retroelement constituted by a natural alternatively spliced RNA of murine replication-competent retroviruses. EMBO Journal, 2003, 22, 4866-4875.	7.8	21
42	Current Peptide and Protein Candidates Challenging HIV Therapy beyond the Vaccine Era. Viruses, 2017, 9, 281.	3.3	21
43	In vitro and in vivo cleavage of HIV-1 RNA by new SOFA-HDV ribozymes and their potential to inhibit viral replication. RNA Biology, 2011, 8, 343-353.	3.1	17
44	Introduction of a <i>cis</i> -Acting Mutation in the Capsid-Coding Gene of Moloney Murine Leukemia Virus Extends Its Leukemogenic Properties. Journal of Virology, 1999, 73, 10472-10479.	3.4	17
45	Murine leukemia virus RNA dimerization is coupled to transcription and splicing processes. Retrovirology, 2010, 7, 64.	2.0	15
46	Spontaneous dimerization of retroviral MoMuLV RNA. Biochimie, 1993, 75, 681-686.	2.6	13
47	Implications of the Nucleocapsid and the Microenvironment in Retroviral Reverse Transcription. Viruses, 2010, 2, 939-960.	3.3	13
48	From Cells to Virus Particles: Quantitative Methods to Monitor RNA Packaging. Viruses, 2016, 8, 239.	3.3	13
49	Characterization of a natural heterodimer between MLV genomic RNA and the SD′ retroelement generated by alternative splicing. Rna, 2007, 13, 2266-2276.	3.5	12
50	MLV requires Tap/NXF1-dependent pathway to export its unspliced RNA to the cytoplasm and to express both spliced and unspliced RNAs. Retrovirology, 2014, 11, 21.	2.0	12
51	Crosslinking of ribosomal protein S18 to 16 S RNA inE. coliribosomal 30 S subunits by the use of a reversible crosslinking agent:Trans-diamminedichloroplatinum(II). FEBS Letters, 1988, 228, 1-6.	2.8	11
52	Insights into the nuclear export of murine leukemia virus intron-containing RNA. RNA Biology, 2015, 12, 942-949.	3.1	9
53	Advances in Continuous Microfluidics-Based Technologies for the Study of HIV Infection. Viruses, 2020, 12, 982.	3.3	9
54	Murine Leukemia Virus P50 Protein Counteracts APOBEC3 by Blocking Its Packaging. Journal of Virology, 2020, 94, .	3.4	9

MARYLENE MOUGEL

#	Article	IF	CITATIONS
55	Requirements for nucleocapsid-mediated regulation of reverse transcription during the late steps of HIV-1 assembly. Scientific Reports, 2016, 6, 27536.	3.3	8
56	Activation of c-myb by 5′ retrovirus promoter insertion in myeloid neoplasms is dependent upon an intact alternative splice donor site (SD′) in gag. Virology, 2004, 330, 398-407.	2.4	7
57	MoMuLV and HIV-1 Nucleocapsid Proteins Have a Common Role in Genomic RNA Packaging but Different in Late Reverse Transcription. PLoS ONE, 2012, 7, e51534.	2.5	4
58	Quantitative analysis of the formation of nucleoprotein complexes between HIV-1 Gag protein and genomic RNA using transmission electron microscopy. Journal of Biological Chemistry, 2022, 298, 101500.	3.4	4
59	Optical Quantification by Nanopores of Viruses, Extracellular Vesicles, and Nanoparticles. Nano Letters, 2022, 22, 3651-3658.	9.1	4
60	A pyrophosphatase activity associated with purified HIV-1 particles. Biochimie, 2012, 94, 2498-2507.	2.6	1
61	Inhibition of HIV-1 expression and replication by SOFA-HDV ribozymes against Tat and Rev mRNA sequences. Retrovirology, 2009, 6, .	2.0	0
62	A new role of the HIV-1 nucleocapsid in the spatiotemporal control of the reverse transcription throughout the virus replication cycle. Retrovirology, 2009, 6, .	2.0	0
63	HIV-1 specifically encapsidates other nucleic acids than its genomic RNA. Retrovirology, 2009, 6, .	2.0	0
64	Uracil DNA glycosylase 2 negatively regulates HIV-1 LTR transcription. Retrovirology, 2009, 6, .	2.0	0