Trevor C Charles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2559558/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A communal catalogue reveals Earth's multiscale microbial diversity. Nature, 2017, 551, 457-463.	13.7	1,942
2	Microbiome definition re-visited: old concepts and new challenges. Microbiome, 2020, 8, 103.	4.9	903
3	Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiology and Biochemistry, 2014, 80, 160-167.	2.8	442
4	Isolation and characterization of new plant growth-promoting bacterial endophytes. Applied Soil Ecology, 2012, 61, 217-224.	2.1	299
5	An ACC Deaminase Minus Mutant of Enterobacter cloacae UW4No Longer Promotes Root Elongation. Current Microbiology, 2000, 41, 101-105.	1.0	205
6	A chromosomally encoded two-component sensory transduction system is required for virulence of Agrobacterium tumefaciens. Journal of Bacteriology, 1993, 175, 6614-6625.	1.0	185
7	Expression of an Exogenous 1-Aminocyclopropane-1-Carboxylate Deaminase Gene in Sinorhizobium meliloti Increases Its Ability To Nodulate Alfalfa. Applied and Environmental Microbiology, 2004, 70, 5891-5897.	1.4	172
8	1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Genes in Rhizobia from Southern Saskatchewan. Microbial Ecology, 2009, 57, 423-436.	1.4	170
9	The role of PHB metabolism in the symbiosis of rhizobia with legumes. Applied Microbiology and Biotechnology, 2006, 71, 377-386.	1.7	156
10	A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB17: isolation and classification. Journal of Applied Microbiology, 2006, 100, 545-554.	1.4	138
11	Analysis of C4-dicarboxylate transport genes in Rhizobium meliloti. Molecular Microbiology, 1989, 3, 813-823.	1.2	137
12	A bioinformatics approach to the determination of genes involved in endophytic behavior in Burkholderia spp Journal of Theoretical Biology, 2014, 343, 193-198.	0.8	124
13	Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase. Journal of Applied Microbiology, 2012, 113, 1139-1144.	1.4	123
14	Current and future resources for functional metagenomics. Frontiers in Microbiology, 2015, 6, 1196.	1.5	120
15	Multisubstrate Isotope Labeling and Metagenomic Analysis of Active Soil Bacterial Communities. MBio, 2014, 5, e01157-14.	1.8	109
16	Elucidation of gibberellin biosynthesis in bacteria reveals convergent evolution. Nature Chemical Biology, 2017, 13, 69-74.	3.9	103
17	A global pH sensor: Agrobacterium sensor protein ChvG regulates acid-inducible genes on its two chromosomes and Ti plasmid. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12369-12374.	3.3	102
18	The class IId bacteriocin thuricin-17 increases plant growth. Planta, 2009, 229, 747-755.	1.6	87

#	Article	IF	CITATIONS
19	Preformed dimeric state of the sensor protein VirA is involved in plantAgrobacterium signal transduction Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 9939-9943.	3.3	77
20	Cellobiose dehydrogenase is essential for wood invasion and nonessential for kraft pulp delignification by Trametes versicolor. Enzyme and Microbial Technology, 2001, 29, 478-489.	1.6	74
21	Genetic map of Rhizobium meliloti megaplasmid pRmeSU47b. Journal of Bacteriology, 1990, 172, 2469-2476.	1.0	67
22	ACC deaminase from plant growth-promoting bacteria affects crown gall development. Canadian Journal of Microbiology, 2007, 53, 1291-1299.	0.8	67
23	Co-inoculation dose and root zone temperature for plant growth promoting rhizobacteria on soybean [Glycine max (L.) Merr] grown in soil-less media. Soil Biology and Biochemistry, 2002, 34, 1953-1957.	4.2	62
24	Isolation of Poly-3-Hydroxybutyrate Metabolism Genes from Complex Microbial Communities by Phenotypic Complementation of Bacterial Mutants. Applied and Environmental Microbiology, 2006, 72, 384-391.	1.4	60
25	Roles of poly-3-hydroxybutyrate (PHB) and glycogen in symbiosis of Sinorhizobium meliloti with Medicago sp Microbiology (United Kingdom), 2007, 153, 388-398.	0.7	57
26	Null mutations in <i>Sinorhizobium meliloti exoS</i> and <i>chvI</i> demonstrate the importance of this twoâ€component regulatory system for symbiosis. Molecular Microbiology, 2009, 74, 1223-1237.	1.2	56
27	Low temperature tolerant Bradyrhizobium japonicum strains allowing improved nodulation and nitrogen fixation of soybean in a short season (cool spring) area. European Journal of Agronomy, 2003, 19, 205-213.	1.9	53
28	Two-Component Sensory Transduction Systems in Phytobacteria. Annual Review of Phytopathology, 1992, 30, 463-484.	3.5	51
29	Identification and characterization of new LuxR/Luxlâ€ŧype quorum sensing systems from metagenomic libraries. Environmental Microbiology, 2010, 12, 105-117.	1.8	51
30	Megaplasmid and Chromosomal Loci for the PHB Degradation Pathway in <i>Rhizobium (Sinorhizobium) meliloti</i> . Genetics, 1997, 146, 1211-1220.	1.2	51
31	Cloning and sequencing of a gene encoding cellobiose dehydrogenase from Trametes versicolor. Gene, 1998, 210, 211-219.	1.0	49
32	Functional metagenomics reveals novel β-galactosidases not predictable from gene sequences. PLoS ONE, 2017, 12, e0172545.	1.1	48
33	Requirement for the Enzymes Acetoacetyl Coenzyme A Synthetase and Poly-3-Hydroxybutyrate (PHB) Synthase for Growth of Sinorhizobium meliloti on PHB Cycle Intermediates. Journal of Bacteriology, 2000, 182, 2113-2118.	1.0	45
34	Synthesis and Physical Properties of Polyhydroxyalkanoate Polymers with Different Monomer Compositions by Recombinant Pseudomonas putida LS46 Expressing a Novel PHA SYNTHASE (PhaC116) Enzyme. Applied Sciences (Switzerland), 2017, 7, 242.	1.3	44
35	Heterologous complementation of the exopolysaccharide synthesis and carbon utilization phenotypes ofSinorhizobium melilotiRm1021 polyhydroxyalkanoate synthesis mutants. FEMS Microbiology Letters, 2004, 239, 277-283.	0.7	43
36	Versatile broad-host-range cosmids for construction of high quality metagenomic libraries. Journal of Microbiological Methods, 2014, 99, 27-34.	0.7	42

#	Article	IF	CITATIONS
37	The chvH Locus of Agrobacterium Encodes a Homologue of an Elongation Factor Involved in Protein Synthesis. Journal of Bacteriology, 2001, 183, 36-45.	1.0	40
38	Sinorhizobium meliloti 1021 Loss-of-Function Deletion Mutation in chvl and Its Phenotypic Characteristics. Molecular Plant-Microbe Interactions, 2010, 23, 153-160.	1.4	40
39	Enhanced Arsenic Tolerance in Triticum aestivum Inoculated with Arsenic-Resistant and Plant Growth Promoter Microorganisms from a Heavy Metal-Polluted Soil. Microorganisms, 2019, 7, 348.	1.6	40
40	ndvF, a novel locus located on megaplasmid pRmeSU47b (pEXO) of Rhizobium meliloti, is required for normal nodule development. Journal of Bacteriology, 1991, 173, 3981-3992.	1.0	39
41	Inhibition of the expression of Bradyrhizobium japonicum nod genes at low temperatures. Soil Biology and Biochemistry, 1996, 28, 1579-1583.	4.2	39
42	Influence of the Poly-3-Hydroxybutyrate (PHB) Granule-Associated Proteins (PhaP1 and PhaP2) on PHB Accumulation and Symbiotic Nitrogen Fixation in <i>Sinorhizobium meliloti</i> Rm1021. Journal of Bacteriology, 2007, 189, 9050-9056.	1.0	39
43	Endophytic Phytohormones and Their Role in Plant Growth Promotion. , 2017, , 89-105.		39
44	Fungal and Bacterial Microbiome Associated with the Rhizosphere of Native Plants from the Atacama Desert. Microorganisms, 2020, 8, 209.	1.6	39
45	Discovery of a proteolytic flagellin family in diverse bacterial phyla that assembles enzymatically active flagella. Nature Communications, 2017, 8, 521.	5.8	35
46	ACC deaminase activity in avirulent <i>Agrobacterium tumefaciens</i> D3. Canadian Journal of Microbiology, 2011, 57, 278-286.	0.8	34
47	NodMutDB: a database for genes and mutants involved in symbiosis. Bioinformatics, 2005, 21, 2927-2929.	1.8	32
48	Nonlinear electrophoresis for purification of soil DNA for metagenomics. Journal of Microbiological Methods, 2012, 88, 35-40.	0.7	32
49	Ti Plasmid and Chromosomally Encoded Two-Component Systems Important in Plant Cell Transformation by <i>Agrobacterium</i> Species. , 0, , 367-385.		32
50	Harvesting of novel polyhydroxyalkanaote (PHA) synthase encoding genes from a soil metagenome library using phenotypic screening. FEMS Microbiology Letters, 2011, 321, 150-156.	0.7	31
51	Development of Microbiome Biobanks – Challenges and Opportunities. Trends in Microbiology, 2021, 29, 89-92.	3.5	31
52	ACC deaminase increases the Agrobacterium tumefaciens-mediated transformation frequency of commercial canola cultivars. FEMS Microbiology Letters, 2010, 307, 185-190.	0.7	30
53	Comparison of the symbiotic and competition phenotypes of Sinorhizobium meliloti PHB synthesis and degradation pathway mutants. Canadian Journal of Microbiology, 2005, 51, 599-604.	0.8	29
54	Discrete Regions of the Sensor Protein VirA Determine the Strain-Specific Ability of Agrobacterium to Agroinfect Maize. Molecular Plant-Microbe Interactions, 1997, 10, 221-227.	1.4	27

#	Article	IF	CITATIONS
55	Mutational Analysis of the Sinorhizobium meliloti Short-Chain Dehydrogenase/Reductase Family Reveals Substantial Contribution to Symbiosis and Catabolic Diversity. Molecular Plant-Microbe Interactions, 2008, 21, 979-987.	1.4	27
56	Isolation and Identification of Endophytic Bacteria from Mycorrhizal Tissues of Terrestrial Orchids from Southern Chile. Diversity, 2020, 12, 55.	0.7	26
57	Identification of an Acetoacetyl Coenzyme A Synthetase-Dependent Pathway for Utilization of l-(+)-3-Hydroxybutyrate in Sinorhizobium meliloti. Journal of Bacteriology, 2002, 184, 1571-1577.	1.0	25
58	Strong spurious transcription likely contributes to DNA insert bias in typical metagenomic clone libraries. Microbiome, 2015, 3, 22.	4.9	25
59	Methylmalonyl-CoA mutase encoding gene of Sinorhizobium meliloti. Gene, 1999, 226, 121-127.	1.0	24
60	The effect of temperature and genistein concentration on lipo-chitooligosaccharide (LCO) production by wild-type and mutant strains of Bradyrhizobium japonicum. Soil Biology and Biochemistry, 2002, 34, 1175-1180.	4.2	24
61	Engineering of Escherichia coli for direct and modulated biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer using unrelated carbon sources. Scientific Reports, 2016, 6, 36470.	1.6	24
62	Genetic transformation of Trametes versicolor to phleomycin resistance with the dominant selectable marker shble. Applied Microbiology and Biotechnology, 2001, 56, 201-204.	1.7	23
63	Application of crossover-PCR-mediated deletion-insertion mutagenesis to analysis of the bdhA-xdhA2-xdhB2 mixed-function operon of Sinorhizobium meliloti. Archives of Microbiology, 2003, 179, 301-304.	1.0	22
64	Designer Sinorhizobium meliloti strains and multi-functional vectors enable direct inter-kingdom DNA transfer. PLoS ONE, 2019, 14, e0206781.	1.1	21
65	Bradyrhizobium japonicum mutants allowing improved nodulation and nitrogen fixation of field-grown soybean in a short season area. Journal of Agricultural Science, 2002, 138, 293-300.	0.6	20
66	Open resource metagenomics: a model for sharing metagenomic libraries. Standards in Genomic Sciences, 2011, 5, 203-210.	1.5	20
67	Transcriptome Analysis of Polyhydroxybutyrate Cycle Mutants Reveals Discrete Loci Connecting Nitrogen Utilization and Carbon Storage in <i>Sinorhizobium meliloti</i> . MSystems, 2017, 2, .	1.7	19
68	Lactose utilization and enzymes encoded by megaplasmids in Rhizobium meliloti SU47: implications for population studies. Journal of General Microbiology, 1990, 136, 2497-2502.	2.3	18
69	Effect of experimental contamination with the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine on soil bacterial communities. FEMS Microbiology Ecology, 2003, 43, 255-262.	1.3	18
70	Evaluation of a Pooled Strategy for High-Throughput Sequencing of Cosmid Clones from Metagenomic Libraries. PLoS ONE, 2014, 9, e98968.	1.1	18
71	Sinorhizobium melilotistrain 1021bioSandbdhAgene transcriptions are both affected by biotin available in defined medium. FEMS Microbiology Letters, 2000, 182, 41-44.	0.7	17
72	Novel polyhydroxyalkanoate copolymers produced in Pseudomonas putida by metagenomic polyhydroxyalkanoate synthases. Applied Microbiology and Biotechnology, 2016, 100, 7611-7627.	1.7	17

#	Article	IF	CITATIONS
73	Members of the Sinorhizobium meliloti ChvI regulon identified by a DNA binding screen. BMC Microbiology, 2013, 13, 132.	1.3	16
74	Lactic acid containing polymers produced in engineered Sinorhizobium meliloti and Pseudomonas putida. PLoS ONE, 2020, 15, e0218302.	1.1	16
75	Dynamics of microbial populations and diversity in NAPL contaminated peat soil under varying water table conditions. Environmental Research, 2020, 191, 110167.	3.7	15
76	Purification and characterization of homodimeric methylmalonyl-CoA mutase from Sinorhizobium meliloti. Archives of Microbiology, 2003, 180, 151-154.	1.0	14
77	Effects of Nitrogen and Phosphorus Limitation on the Activated Sludge Biomass in a Kraft Mill Biotreatment System. Water Environment Research, 2006, 78, 2303-2310.	1.3	14
78	Identification and characterization of the intracellular poly-3-hydroxybutyrate depolymerase enzyme PhaZ of Sinorhizobium meliloti. BMC Microbiology, 2010, 10, 92.	1.3	14
79	Time Series Resolution of the Fish Necrobiome Reveals a Decomposer Succession Involving Toxigenic Bacterial Pathogens. MSystems, 2020, 5, .	1.7	14
80	Driving factors influencing the rhizobacteriome community structure of plants adapted to multiple climatic stressors in edaphic savannas. Science of the Total Environment, 2021, 769, 145214.	3.9	14
81	The ntrA gene of Agrobacterium tumefaciens: identification, cloning, and phenotype of a site-directed mutant. Journal of Bacteriology, 1992, 174, 2720-2723.	1.0	13
82	Genome-engineered <i>Sinorhizobium meliloti</i> for the production of poly(lactic- <i>co</i> -3-hydroxybutyric) acid copolymer. Canadian Journal of Microbiology, 2016, 62, 130-138.	0.8	13
83	Metagenomic Approaches to Identify Novel Organisms from the Soil Environment in a Classroom Setting. Journal of Microbiology and Biology Education, 2016, 17, 423-429.	0.5	12
84	An engineered GFP fluorescent bacterial biosensor for detecting and quantifying silver and copper ions. BioMetals, 2019, 32, 265-272.	1.8	12
85	Low Temperature–Tolerant Bradyrhizobium japonicum Strains Allowing Improved Soybean Yield in Shortâ€ S eason Areas. Agronomy Journal, 2002, 94, 870-875.	0.9	10
86	Characterization ofbdhA, encoding the enzyme d-3-hydroxybutyrate dehydrogenase, fromSinorhizobiumsp. strain NGR234. FEMS Microbiology Letters, 2005, 242, 87-94.	0.7	9
87	Site-specific Bacterial Chromosome Engineering: ΦC31 Integrase Mediated Cassette Exchange (IMCE). Journal of Visualized Experiments, 2012, , .	0.2	9
88	Developing a <i>Bacteroides</i> System for Function-Based Screening of DNA from the Human Gut Microbiome. MSystems, 2018, 3, .	1.7	9
89	Genome Sequence of Brevundimonas sp., an Arsenic Resistant Soil Bacterium. Diversity, 2021, 13, 344.	0.7	9
90	Bradyrhizobium japonicum Mutants with Enhanced Sensitivity to Genistein Resulting in Altered nod Gene Regulation. Molecular Plant-Microbe Interactions, 2001, 14, 1404-1410.	1.4	8

#	Article	IF	CITATIONS
91	Presence of a novel 16S–23S rRNA gene intergenic spacer insert in Bradyrhizobium canariense strains. FEMS Microbiology Letters, 2007, 269, 207-212.	0.7	7
92	MetaProx: the database of metagenomic proximons. Database: the Journal of Biological Databases and Curation, 2014, 2014, .	1.4	7
93	Unraveling a Tangled Skein: Evolutionary Analysis of the Bacterial Gibberellin Biosynthetic Operon. MSphere, 2020, 5, .	1.3	7
94	Low Temperature–Tolerant Strains Allowing Improved Soybean Yield in Short-Season Areas. Agronomy Journal, 2002, 94, 870.	0.9	7
95	Metagenome-Assembled Genome Sequences of Five Strains from the <i>Microtus ochrogaster</i> (Prairie Vole) Fecal Microbiome. Microbiology Resource Announcements, 2020, 9, .	0.3	5
96	Bradyrhizobium japonicum Mutants Allowing Improved Soybean Yield in Short Season Areas with Cool Spring Soil Temperatures. Crop Science, 2002, 42, 1186-1190.	0.8	4
97	Methods for the Isolation of Genes Encoding Novel PHB Cycle Enzymes from Complex Microbial Communities. Methods in Molecular Biology, 2010, 668, 235-246.	0.4	4
98	The Fluorescence Theatre: a cost-effective device using theatre gels for fluorescent protein and dye screening. Canadian Journal of Microbiology, 2011, 57, 339-342.	0.8	4
99	The Completed PacBio Single-Molecule Real-Time Sequence of Methylosinus trichosporium Strain OB3b Reveals the Presence of a Third Large Plasmid. Genome Announcements, 2017, 5, .	0.8	4
100	Slr4, a newly identified Sâ€layer protein from marine Gammaproteobacteria, is a major biofilm matrix component. Molecular Microbiology, 2020, 114, 979-990.	1.2	4
101	Evaluation of Bacterial Community Structure and Its Influence on Sulfide Oxidation in a Bio-Leaching Environment. Geomicrobiology Journal, 2009, 26, 44-54.	1.0	2
102	Meeting Report: 1st International Functional Metagenomics Workshop May 7–8, 2012, St. Jacobs, Ontario, Canada Standards in Genomic Sciences, 2013, 8, 106-111.	1.5	2
103	An analysis of the validity and utility of the proximon proposition. Functional and Integrative Genomics, 2016, 16, 215-220.	1.4	2
104	Metagenomic Cosmid Libraries Suitable for Functional Screening in Proteobacteria. , 2017, , 1-11.		2
105	Does a carbonatite deposit influence its surrounding ecosystem?. Facets, 2019, 4, 389-406.	1.1	2
106	Methods for the Isolation of Genes Encoding Novel PHA Metabolism Enzymes from Complex Microbial Communities. Methods in Molecular Biology, 2017, 1539, 237-248.	0.4	1
107	Sequence polarity between the promoter and the adjacent gene modulates promoter activity. Plasmid, 2021, 117, 102598.	0.4	1
108	Sinorhizobium meliloti strain 1021 bioS and bdhA gene transcriptions are both affected by biotin		1

⁸ available in defined medium. , 0, .

0

#	Article	IF	CITATIONS
109	Growth and nodulation competitiveness of poly(3-hydroxybutyrate) metabolism mutants of Sinorhizobium meliloti and effects of exogenous biotin. Chinese Journal of Agricultural Biotechnology, 2004, 1, 93-98.	0.1	0
110	Impacts on International Research Collaborations from DSI/ABS Uncertainty. Trends in Biotechnology, 2021, 39, 430-433.	4.9	0
111	Open Resource Metagenomics. , 2013, , 1-3.		0
112	Stable Isotope Probing and Metagenomics. , 0, , 97-114.		0
113	Open Resource Metagenomics. , 2015, , 573-575.		0
114	Functional Analysis of Genes of Unknown Functions in Sinorhizobium meliloti 1021. , 2005, , 115-118.		0
115	Functional Genomic Analysis of the SDR Family in Sinorhizobium meliloti. , 2005, , 129-130.		0
116	Further Investigation of the Roles of Poly-3-Hydroxybutyrate (PHB) and Glycogen in Sinorhizobium mellioti-Medicago SP. Symbiosis. , 2005, , 311-312.		0
117	Title is missing!. , 2020, 15, e0218302.		0
118	Title is missing!. , 2020, 15, e0218302.		0
119	Title is missing!. , 2020, 15, e0218302.		0
120	Title is missing!. , 2020, 15, e0218302.		0
121	Title is missing!. , 2020, 15, e0218302.		0

122 Title is missing!. , 2020, 15, e0218302.