
Anatoly B Uzdensky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2559469/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Apoptosis regulation in the penumbra after ischemic stroke: expression of pro- and antiapoptotic proteins. Apoptosis: an International Journal on Programmed Cell Death, 2019, 24, 687-702.	2.2	193
2	Photothrombotic Stroke as a Model of Ischemic Stroke. Translational Stroke Research, 2018, 9, 437-451.	2.3	95
3	Intracellular Localisation of Hypericin in Human Glioblastoma and Carcinoma Cell Lines. Lasers in Medical Science, 2001, 16, 276-283.	1.0	63
4	Photodynamic effect of novel chlorin e6 derivatives on a single nerve cell. Life Sciences, 2004, 74, 2185-2197.	2.0	57
5	Signal Transduction in Human Cutaneous Melanoma and Target Drugs. Current Cancer Drug Targets, 2013, 13, 843-866.	0.8	56
6	Protein Profile and Morphological Alterations in Penumbra after Focal Photothrombotic Infarction in the Rat Cerebral Cortex. Molecular Neurobiology, 2017, 54, 4172-4188.	1.9	45
7	The effect of sub-lethal ALA-PDT on the cytoskeleton and adhesion of cultured human cancer cells. Biochimica Et Biophysica Acta - General Subjects, 2005, 1722, 43-50.	1.1	44
8	Profiling of Signaling Proteins in Penumbra After Focal Photothrombotic Infarct in the Rat Brain Cortex. Molecular Neurobiology, 2017, 54, 6839-6856.	1.9	42
9	Involvement of adenylate cyclase and tyrosine kinase signaling pathways in response of crayfish stretch receptor neuron and satellite glia cell to photodynamic treatment. Glia, 2005, 49, 339-348.	2.5	34
10	Photobleaching of Hypericin Bound to Human Serum Albumin, Cultured Adenocarcinoma Cells and Nude Mice Skin¶. Photochemistry and Photobiology, 2002, 76, 320.	1.3	32
11	Signal Transduction and Photodynamic Therapy. Current Signal Transduction Therapy, 2008, 3, 55-74.	0.3	31
12	Photodynamic Inactivation of Isolated Crayfish Mechanoreceptor Neuron: Different Death Modes Under Different Photosensitizer Concentrations¶. Photochemistry and Photobiology, 2002, 76, 431-437.	1.3	30
13	Crayfish mechanoreceptor neuron prevents photoinduced apoptosis of satellite glial cells. Brain Research Bulletin, 2006, 69, 495-500.	1.4	30
14	Photosensitization with protoporphyrin IX inhibits attachment of cancer cells to a substratum. Biochemical and Biophysical Research Communications, 2004, 322, 452-457.	1.0	29
15	Involvement of Ca2+- and cyclic adenosine monophosphate-mediated signaling pathways in photodynamic injury of isolated crayfish neuron and satellite glial cells. Journal of Neuroscience Research, 2007, 85, 860-870.	1.3	28
16	Expression of neuronal and signaling proteins in penumbra around a photothrombotic infarction core in rat cerebral cortex. Biochemistry (Moscow), 2015, 80, 790-799.	0.7	26
17	Ultrastructure of neuroglial contacts in crayfish stretch receptor. Cell and Tissue Research, 2009, 337, 477-490.	1.5	25
18	Photodynamic effect of hypericin and a water-soluble derivative on isolated crayfish neuron and surrounding glial cells. Journal of Photochemistry and Photobiology B: Biology, 2003, 72, 27-33.	1.7	24

#	Article	IF	CITATIONS
19	Single neuron response to pulse-periodic laser microirradiation. Action spectra and two-photon effect. Journal of Photochemistry and Photobiology B: Biology, 1997, 39, 224-228.	1.7	22
20	Protection of Crayfish Glial Cells but not Neurons from Photodynamic Injury by Nerve Growth Factor. Journal of Molecular Neuroscience, 2009, 39, 308-319.	1.1	22
21	On the Role of Phosphatidylinositol 3-Kinase, Protein Kinase B/Akt, and Glycogen Synthase Kinase-3β in Photodynamic Injury of Crayfish Neurons and Glial Cells. Journal of Molecular Neuroscience, 2011, 45, 229-235.	1.1	21
22	Expression of Histone Deacetylases HDAC1 and HDAC2 and Their Role in Apoptosis in the Penumbra Induced by Photothrombotic Stroke. Molecular Neurobiology, 2020, 57, 226-238.	1.9	21
23	Firing Inhibition Processes in the Response Dynamics of Isolated Crayfish Nerve Cell to the Photodynamic Effect of Sulphonated Aluminium Phthalocyanine: Participation of Free Radicals and Ca 2+. Lasers in Medical Science, 2000, 15, 123-130.	1.0	20
24	Protection Effect of GDNF and Neurturin on Photosensitized Crayfish Neurons and Glial Cells. Journal of Molecular Neuroscience, 2013, 49, 480-490.	1.1	20
25	PDT-induced epigenetic changes in the mouse cerebral cortex: A protein microarray study. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 262-270.	1.1	20
26	Photodynamic inhibition of enzymatic detachment of human cancer cells from a substratum. Biochimica Et Biophysica Acta - General Subjects, 2004, 1670, 1-11.	1.1	19
27	Dynamics of ultrastructural changes in the isolated crayfish mechanoreceptor neuron under photodynamic impact. Journal of Neuroscience Research, 2008, 86, 1409-1416.	1.3	18
28	Expression of proteins involved in epigenetic regulation in human cutaneous melanoma and peritumoral skin. Tumor Biology, 2014, 35, 8225-8233.	0.8	18
29	Protection of the Crayfish Mechanoreceptor Neuron and Glial Cells from Photooxidative Injury by Modulators of Diverse Signal Transduction Pathways. Molecular Neurobiology, 2015, 52, 811-825.	1.9	18
30	Reactive Oxygen Species Produced by a Photodynamic Effect Induced Calcium Signal in Neurons and Astrocytes. Molecular Neurobiology, 2018, 55, 96-102.	1.9	17
31	Photodynamic Inactivation of the Single Crayfish Nerve Cell: Dynamics of Electrophysiological Responses and Comparison of Photosensitisers. Lasers in Medical Science, 1999, 14, 185-195.	1.0	16
32	Involvement of nitric oxide in photodynamic injury of neurons and glial cells. Nitric Oxide - Biology and Chemistry, 2013, 29, 46-52.	1.2	14
33	Epigenetic Alterations Induced by Photothrombotic Stroke in the Rat Cerebral Cortex: Deacetylation of Histone Deacetylases and Histone Acetyltransferases. International Journal of Molecular Sciences, 2019, 20, 2882.	1.8	14
34	The Neuroprotective Effect of the HDAC2/3 Inhibitor MI192 on the Penumbra After Photothrombotic Stroke in the Mouse Brain. Molecular Neurobiology, 2020, 57, 239-248.	1.9	14
35	Overexpression of HDAC6, but not HDAC3 and HDAC4 in the penumbra after photothrombotic stroke in the rat cerebral cortex and the neuroprotective effects of α-phenyl tropolone, HPOB, and sodium valproate. Brain Research Bulletin, 2020, 162, 151-165.	1.4	14
36	Laser microirradiation of single nerve cell. , 1993, , .		13

#	Article	IF	CITATIONS
37	Dynamics of signaling, cytoskeleton and cell cycle regulation proteins in glioblastoma cells after sub-lethal photodynamic treatment: Antibody microarray study. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 795-803.	1.1	13
38	Photodynamic therapy: a review of applications in neurooncology and neuropathology. Journal of Biomedical Optics, 2015, 20, 061108.	1.4	13
39	The Expression of E2F1, p53, and Caspase 3 in the Rat Dorsal Root Ganglia After Sciatic Nerve Transection. Journal of Molecular Neuroscience, 2021, 71, 826-835.	1.1	13
40	A single neuron response to photodynamic effect of various aluminum and zinc phthalocyanines. Life Sciences, 2000, 68, 547-555.	2.0	12
41	Photodynamic Effect of Deuteroporphyrin IX and Hematoporphyrin Derivatives on Single Neuron. Biochemical and Biophysical Research Communications, 2001, 281, 1194-1199.	1.0	12
42	Photodynamic inactivation of isolated crayfish mechanoreceptor neuron: different death modes under different photosensitizer concentrations. Photochemistry and Photobiology, 2002, 76, 431-7.	1.3	12
43	The method of isolation of the crayfish abdominal stretch receptor maintaining a connection of the sensory neuron to the ventral nerve cord ganglion. Invertebrate Neuroscience, 2015, 15, 176.	1.8	11
44	On hypericin application in fluorescence diagnosis and cancer treatment: Pharmacokinetics and photosensitizing efficiency in nude mice bearing WiDr carcinoma. Medical Laser Application: International Journal for Laser Treatment and Research, 2006, 21, 271-276.	0.4	10
45	Neuron and gliocyte death induced by photodynamic treatment: Signal processes and neuron-glial interactions. Neuroscience and Behavioral Physiology, 2008, 38, 727-735.	0.2	10
46	The biophysical aspects of photodynamic therapy. Biophysics (Russian Federation), 2016, 61, 461-469.	0.2	10
47	Involvement of MAPK, Akt/CSK-3β and AMPK/mTOR signaling pathways in protection of remote glial cells from axotomy-induced necrosis and apoptosis in the isolated crayfish stretch receptor. Molecular and Cellular Neurosciences, 2017, 83, 1-5.	1.0	10
48	The Localization of p53 in the Crayfish Mechanoreceptor Neurons and Its Role in Axotomy-Induced Death of Satellite Glial Cells Remote from the Axon Transection Site. Journal of Molecular Neuroscience, 2020, 70, 532-541.	1.1	10
49	Histone acetylation and deacetylation in ischemic stroke. Neural Regeneration Research, 2021, 16, 1529.	1.6	10
50	Regulation of apoptosis in the ischemic penumbra in the first day post-stroke. Neural Regeneration Research, 2020, 15, 253.	1.6	10
51	Dynamics of ultrastructural alterations in photosensitized crayfish glial and neuronal cells: Structures involved in transport processes and neuroglial interactions. Journal of Neuroscience Research, 2011, 89, 341-351.	1.3	9
52	Ca2+ mediates axotomy-induced necrosis and apoptosis of satellite glial cells remote from the transection site in the isolated crayfish mechanoreceptor. Molecular and Cellular Neurosciences, 2018, 88, 7-15.	1.0	9
53	Axotomy-Induced Changes of the Protein Profile in the Crayfish Ventral Cord Ganglia. Journal of Molecular Neuroscience, 2019, 68, 667-678.	1.1	9
54	Photodynamic effect of Radachlorin on nerve and glial cells. Photodiagnosis and Photodynamic Therapy, 2014, 11, 357-364.	1.3	8

#	Article	IF	CITATIONS
55	Photo-Induced Oxidative Stress Impairs Mitochondrial Metabolism in Neurons and Astrocytes. Molecular Neurobiology, 2018, 55, 90-95.	1.9	8
56	Photodynamic inactivation of isolated crayfish neuron requires protein kinase C, PI 3-kinase and Ca2+. Journal of Photochemistry and Photobiology B: Biology, 2003, 70, 99-105.	1.7	7
57	Epigenetic regulation of death of crayfish glial cells but not neurons induced by photodynamic impact. Brain Research Bulletin, 2014, 102, 15-21.	1.4	7
58	The Expression and Localization of Histone Acetyltransferases HAT1 and PCAF in Neurons and Astrocytes of the Photothrombotic Stroke-Induced Penumbra in the Rat Brain Cortex. Molecular Neurobiology, 2020, 57, 3219-3227.	1.9	7
59	Photobleaching of Hypericin Bound to Human Serum Albumin, Cultured Adenocarcinoma Cells and Nude Mice Skin¶. Photochemistry and Photobiology, 2002, 76, 320-328.	1.3	6
60	CELLULAR STRUCTURES INVOLVED IN THE TRANSPORT PROCESSES AND NEUROGLIAL INTERACTIONS IN THE CRAYFISH STRETCH RECEPTOR. Journal of Integrative Neuroscience, 2009, 08, 433-440.	0.8	6
61	The paired neuroglial and interglial membranes in the crayfish stretch receptor and their local disorganization. Journal of Neuroscience Research, 2015, 93, 707-713.	1.3	6
62	Са2+- and NF-κB-dependent generation of NO in the photosensitized neurons and satellite glial cells. Journal of Photochemistry and Photobiology B: Biology, 2019, 199, 111603.	1.7	6
63	HDAC1 Expression, Histone Deacetylation, and Protective Role of Sodium Valproate in the Rat Dorsal Root Ganglia After Sciatic Nerve Transection. Molecular Neurobiology, 2021, 58, 217-228.	1.9	6
64	Controlled Necrosis. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2010, 4, 3-12.	0.3	5
65	Effect of Weak Extremely Low Frequency Magnetic Field on Isolated Crayfish Stretch Receptor Neuron: Nonlinear Dependence on Field Amplitude and Frequency. Electromagnetic Biology and Medicine, 1997, 16, 267-279.	0.4	4
66	A Cytologist's View of Resonance Mechanisms for Biologic Effects of ELF Magnetic Fields. Electromagnetic Biology and Medicine, 1999, 18, 67-78.	0.4	4
67	PDT-induced death of sensory neurons and glial cells in the isolated crayfish stretch receptor after proteolytic treatment. Journal of Neuroscience Research, 2005, 82, 866-874.	1.3	4
68	Responses of crayfish neurons and glial cells to photodynamic impact: Intracellular signaling, ultrastructural changes, and neuroglial interactions. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2014, 8, 1-15.	0.3	4
69	Photodynamic therapy-induced nitric oxide production in neuronal and glial cells. Journal of Biomedical Optics, 2016, 21, 105005.	1.4	4
70	The Focal-Focal Preconditioning Effect of Photothrombotic Impact on the Signaling Protein Profile in the Penumbra Surrounding the Ischemic Core Induced by Another Photothrombotic Impact. Molecular Neurobiology, 2018, 55, 229-248.	1.9	4
71	The effect of axotomy on firing and ultrastructure of the crayfish mechanoreceptor neurons and satellite glial cells. Molecular and Cellular Neurosciences, 2020, 107, 103534.	1.0	4
72	Axotomy induces damage to glial cells remote from the transection site in the peripheral nervous system. Neural Regeneration Research, 2018, 13, 639.	1.6	4

#	Article	IF	CITATIONS
73	<title>Single crayfish neuron as a new test-object for search and examination of PDT photosensitizers</title> . , 1996, , .		3
74	Effect of amiridine and tacrine on the functional degeneration of the isolated neuron. Bulletin of Experimental Biology and Medicine, 1996, 121, 48-50.	0.3	3
75	Comparative analysis of neuroprotective activity of new chemical agent Vp and piracetam. Bulletin of Experimental Biology and Medicine, 2000, 129, 362-364.	0.3	3
76	Photodynamic injury of isolated neuron and satellite glial cells: morphological study. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9, 337-342.	1.9	3
77	Multifunctional Proteins. Biophysics (Russian Federation), 2020, 65, 390-403.	0.2	3
78	Bioelectric changes in single neuron under photodynamic effect: comparison of different photosensitizers. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2, 984-987.	1.9	2
79	PDT effect of different photo sensitizers on a single nerve cell: electrophysiological and pharmacological study. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7, 989-995.	1.9	2
80	Helium-neon laser radiation effect on some teratogenic processes in fish embryos. , 2001, , .		2
81	Neurotrophin NGF protects glial cells, but not neurons, of stretch receptor of the crayfish Astacus astacus from photooxidative stress. Journal of Evolutionary Biochemistry and Physiology, 2007, 43, 533-535.	0.2	2
82	CHEMICAL MODULATION OF PHOTODYNAMIC INJURY OF GLIAL CELLS. Journal of Innovative Optical Health Sciences, 2011, 04, 429-435.	0.5	2
83	The response of neurons and glial cells of crayfish to photodynamic treatment: Transcription factors and epigenetic regulation. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2015, 9, 329-336.	0.3	2
84	Epigenetic Mechanisms of Ischemic Stroke. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2019, 13, 289-300.	0.3	2
85	LIM kinase inhibitor T56-LIMKi protects mouse brain from photothrombotic stroke. Brain Injury, 2021, 35, 490-500.	0.6	2
86	Laser microirradiation in the investigation of the integrative function of nerve cells. , 1994, 2083, 225.		1
87	<title>Participation of some radical products in isolated nerve cell response to blue laser
microirradiation</title> . , 1995, , .		1
88	<title>Bioelectric response of single neuron to photodynamic action of chlorin e6</title> . , 1996, , .		1
89	<title>Photodynamic nerve cell killing: dynamics of electrophysiological responses and comparison of photosensitizers</title> . , 1997, 3191, 131.		1
90	Photodynamic effect of different aluminum and zinc phthalocyanines on isolated nerve cell. , 1999, , .		1

#	Article	IF	CITATIONS
91	Radachlorin as a photosensitizer. , 2015, , .		1
92	On involvement of transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells, activator protein-1 and signal transducer and activator of transcription-3 in photodynamic therapy-induced death of crayfish neurons and satellite glial cells. Journal of Biomedical Optics, 2015, 20, 075004.	1.4	1
93	The Role of p53-Dependent Signaling Pathways in Survival and Death of Neurons and Glial Cells after Peripheral Nerve Injury. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2021, 15, 334-347.	0.3	1
94	<title>Helium-neon laser radiation effect on fish embryos and larvae</title> ., 1994, 2128, 614.		0
95	<title>Simulation of isolated nerve cell response to laser micro-irradiation</title> . , 1995, 2370, 485.		Ο
96	<title>Role of protein kinase C in the response of an isolated neuron to photodynamic therapy</title> . , 2002, 4707, 300.		0
97	<title>On the role of adenylate cyclase, tyrosine kinase, and tyrosine phosphatase in the response of nerve and glial cells to photodynamic impact</title> . , 2004, 5474, 352.		Ο
98	Photosensibilization with Endogenous Riboflavin of the Isolated Mechanoreceptor Neuron and Satellite Glial Cells of the Crayfish Astacus leptodactilus. Journal of Evolutionary Biochemistry and Physiology, 2005, 41, 325-332.	0.2	0
99	<title>The involvement of MAP kinases JNK and p38 in photodynamic injury of crayfish neurons and glial cells</title> . , 2007, , .		Ο
100	<title>The role of Ca<formula><sup><roman>2+</roman></sup></formula>-related signaling in photodynamic injury of nerve and glial cells</title> . , 2007, , .		0
101	Involvement of the PI3K/Akt/CSK3β pathway in photodynamic injury of neurons and glial cells. Proceedings of SPIE, 2010, , .	0.8	Ο
102	Photodynamic damage of glial cells in crayfish ventral nerve cord. , 2010, , .		0
103	Clutamate-mediated protection of crayfish glial cells from PDT-induced apoptosis. Proceedings of SPIE, 2010, , .	0.8	0
104	Elevated activity of the crayfish stretch receptor neuron increases resistance of surrounding glial cells to apoptosis induced by photodynamic treatment. Neuroscience Letters, 2010, 468, 89-92.	1.0	0
105	Photodynamic injury of isolated crayfish neuron and surrounding glial cells: the role of p53. Proceedings of SPIE, 2015, , .	0.8	Ο
106	The role of NO synthase isoforms in PDT-induced injury of neurons and glial cells. , 2015, , .		0
107	The involvement of NF-κB in PDT-induced death of crayfish glial and nerve cells. Proceedings of SPIE, 2015, , .	0.8	0
108	Soluble guanylyl cyclase is involved in PDT-induced injury of crayfish glial cells. Proceedings of SPIE, 2016, , .	0.8	0

#	Article	IF	CITATIONS
109	The Involvement of Autophagy in the Response of Neurons and Clial Cells to Photodynamic Treatment. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2018, 12, 199-204.	0.3	о

110 Amiridine Delays Functional Degradation of Isolated Crayfish Neuron Occurring Spontaneously or Under Energy Metabolism Inhibition., 1997,, 345-349.