Marcus J C Long

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2559251/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Function-guided proximity mapping unveils electrophilic-metabolite sensing by proteins not present in their canonical locales. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	12
2	Hitting the Bullseye: Endogenous Electrophiles Show Remarkable Nuance in Signaling Regulation. Chemical Research in Toxicology, 2022, 35, 1636-1648.	1.7	1
3	Keap 1: the new Janus word on the block. Bioorganic and Medicinal Chemistry Letters, 2022, , 128766.	1.0	2
4	An Oculus to Profile and Probe Target Engagement In Vivo: How T-REX Was Born and Its Evolution into G-REX. Accounts of Chemical Research, 2021, 54, 618-631.	7.6	20
5	Time to Get Turned on by Chemical Biology. ChemBioChem, 2021, 22, 814-817.	1.3	3
6	Wdr1 and cofilin are necessary mediators of immune-cell-specific apoptosis triggered by Tecfidera. Nature Communications, 2021, 12, 5736.	5.8	21
7	The not so identical twins: (dis)similarities between reactive electrophile and oxidant sensing and signaling. Chemical Society Reviews, 2021, 50, 12269-12291.	18.7	3
8	A primer on harnessing non-enzymatic post-translational modifications for drug design. RSC Medicinal Chemistry, 2021, 12, 1797-1807.	1.7	1
9	REX technologies for profiling and decoding the electrophile signaling axes mediated by Rosetta Stone proteins. Methods in Enzymology, 2020, 633, 203-230.	0.4	5
10	Getting the Right Grip? How Understanding Electrophile Selectivity Profiles Could Illuminate Our Understanding of Redox Signaling. Antioxidants and Redox Signaling, 2020, 33, 1077-1091.	2.5	6
11	Clofarabine Commandeers the RNR-α-ZRANB3 Nuclear Signaling Axis. Cell Chemical Biology, 2020, 27, 122-133.e5.	2.5	9
12	The more the merrier: how homo-oligomerization alters the interactome and function of ribonucleotide reductase. Current Opinion in Chemical Biology, 2020, 54, 10-18.	2.8	7
13	Neighborhood watch: tools for defining locale-dependent subproteomes and their contextual signaling activities. RSC Chemical Biology, 2020, 1, 42-55.	2.0	12
14	Precision Targeting of <i>pten</i> -Null Triple-Negative Breast Tumors Guided by Electrophilic Metabolite Sensing. ACS Central Science, 2020, 6, 892-902.	5.3	24
15	The mRNAâ€Binding Protein HuR Is a Kineticallyâ€Privileged Electrophile Sensor. Helvetica Chimica Acta, 2020, 103, e2000041.	1.0	5
16	Postâ€ŧranscriptional regulation of Nrf2â€mRNA by the mRNAâ€binding proteins HuR and AUF1. FASEB Journal, 2019, 33, 14636-14652.	0.2	42
17	Breaking the Fourth Wall: Modulating Quaternary Associations for Protein Regulation and Drug Discovery. ChemBioChem, 2019, 20, 1091-1104.	1.3	5
18	Modular Total Synthesis and Cell-Based Anticancer Activity Evaluation of Ouabagenin and Other Cardiotonic Steroids with Varying Degrees of Oxygenation. Journal of the American Chemical Society, 2019, 141, 4849-4860.	6.6	59

Marcus J C Long

#	Article	IF	CITATIONS
19	Interrogating Precision Electrophile Signaling. Trends in Biochemical Sciences, 2019, 44, 380-381.	3.7	9
20	Chemical Biology Gateways to Mapping Location, Association, and Pathway Responsivity. Frontiers in Chemistry, 2019, 7, 125.	1.8	8
21	Diarylcarbonates are a new class of deubiquitinating enzyme inhibitor. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 204-211.	1.0	7
22	Proteomics and Beyond: Cell Decision-Making Shaped by Reactive Electrophiles. Trends in Biochemical Sciences, 2019, 44, 75-89.	3.7	33
23	Cardiovascular Small Heat Shock Protein HSPB7 Is a Kinetically Privileged Reactive Electrophilic Species (RES) Sensor. ACS Chemical Biology, 2018, 13, 1824-1831.	1.6	24
24	Ube2V2 Is a Rosetta Stone Bridging Redox and Ubiquitin Codes, Coordinating DNA Damage Responses. ACS Central Science, 2018, 4, 246-259.	5.3	51
25	Getting the Message? Native Reactive Electrophiles Pass Two Out of Three Thresholds to be Bona Fide Signaling Mediators. BioEssays, 2018, 40, 1700240.	1.2	16
26	Precision Electrophile Tagging in <i>Caenorhabditis elegans</i> . Biochemistry, 2018, 57, 216-220.	1.2	17
27	Redox Signaling by Reactive Electrophiles and Oxidants. Chemical Reviews, 2018, 118, 8798-8888.	23.0	232
28	Nuclear RNR-α antagonizes cell proliferation by directly inhibiting ZRANB3. Nature Chemical Biology, 2018, 14, 943-954.	3.9	22
29	Singleâ€Proteinâ€Specific Redox Targeting in Live Mammalian Cells and C. elegans. Current Protocols in Chemical Biology, 2018, 10, e43.	1.7	13
30	Akt3 is a privileged first responder in isozyme-specific electrophile response. Nature Chemical Biology, 2017, 13, 333-338.	3.9	56
31	<i>Subcellular Redox Targeting</i> : Bridging <i>in Vitro</i> and <i>in Vivo</i> Chemical Biology. ACS Chemical Biology, 2017, 12, 586-600.	1.6	22
32	Privileged Electrophile Sensors: A Resource for Covalent Drug Development. Cell Chemical Biology, 2017, 24, 787-800.	2.5	63
33	Identification of deubiquitinase targets of isothiocyanates using SILAC-assisted quantitative mass spectrometry. Oncotarget, 2017, 8, 51296-51316.	0.8	14
34	Cladribine and Fludarabine Nucleotides Induce Distinct Hexamers Defining a Common Mode of Reversible RNR Inhibition. ACS Chemical Biology, 2016, 11, 2021-2032.	1.6	33
35	The Die Is Cast: Precision Electrophilic Modifications Contribute to Cellular Decision Making. Chemical Research in Toxicology, 2016, 29, 1575-1582.	1.7	23
36	Boc ₃ Arg-Linked Ligands Induce Degradation by Localizing Target Proteins to the 20S Proteasome. ACS Chemical Biology, 2016, 11, 3328-3337.	1.6	53

MARCUS J C LONG

#	Article	IF	CITATIONS
37	T-REX on-demand redox targeting in live cells. Nature Protocols, 2016, 11, 2328-2356.	5.5	62
38	On-Demand Targeting: Investigating Biology with Proximity-Directed Chemistry. Journal of the American Chemical Society, 2016, 138, 3610-3622.	6.6	68
39	Ubiquilin-mediated Small Molecule Inhibition of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling. Journal of Biological Chemistry, 2016, 291, 5221-5233.	1.6	25
40	Substoichiometric Hydroxynonenylation of a Single Protein Recapitulates Whole-Cell-Stimulated Antioxidant Response. Journal of the American Chemical Society, 2015, 137, 10-13.	6.6	66
41	Naturally Occurring Isothiocyanates Exert Anticancer Effects by Inhibiting Deubiquitinating Enzymes. Cancer Research, 2015, 75, 5130-5142.	0.4	65
42	Prion-like Nanofibrils of Small Molecules (PriSM) Selectively Inhibit Cancer Cells by Impeding Cytoskeleton Dynamics. Journal of Biological Chemistry, 2014, 289, 29208-29218.	1.6	46
43	Temporally Controlled Targeting of 4-Hydroxynonenal to Specific Proteins in Living Cells. Journal of the American Chemical Society, 2013, 135, 14496-14499.	6.6	60
44	Uncoupling of Allosteric and Oligomeric Regulation in a Functional Hybrid Enzyme Constructed from Escherichia coli and Human Ribonucleotide Reductase. Biochemistry, 2013, 52, 7050-7059.	1.2	13
45	Mechanistic Studies of Semicarbazone Triapine Targeting Human Ribonucleotide Reductase in Vitro and in Mammalian Cells. Journal of Biological Chemistry, 2012, 287, 35768-35778.	1.6	64
46	Clofarabine Targets the Large Subunit (α) of Human Ribonucleotide Reductase in Live Cells by Assembly into Persistent Hexamers. Chemistry and Biology, 2012, 19, 799-805.	6.2	45
47	Using supramolecular hydrogels to discover the interactions between proteins and molecular nanofibers of small molecules. Chemical Communications, 2012, 48, 8404.	2.2	49
48	Magnetic nanoparticles for direct protein sorting inside live cells. Chemical Science, 2012, 3, 3495.	3.7	24
49	Mushroom Tyrosinase Oxidizes Tyrosineâ€Rich Sequences to Allow Selective Protein Functionalization. ChemBioChem, 2012, 13, 1818-1825.	1.3	27
50	Inhibitor Mediated Protein Degradation. Chemistry and Biology, 2012, 19, 629-637.	6.2	105
51	Glutathione (GSH)-decorated magnetic nanoparticles for binding glutathione-S-transferase (GST) fusion protein and manipulating live cells. Chemical Science, 2011, 2, 945.	3.7	48
52	Cell Compatible Trimethoprim-Decorated Iron Oxide Nanoparticles Bind Dihydrofolate Reductase for Magnetically Modulating Focal Adhesion of Mammalian Cells. Journal of the American Chemical Society, 2011, 133, 10006-10009.	6.6	38
53	Kinetic resolution and parallel kinetic resolution of methyl (±)-5-alkyl-cyclopentene-1-carboxylates for the asymmetric synthesis of 5-alkyl-cispentacin derivatives. Organic and Biomolecular Chemistry, 2005, 3, 2762.	1.5	58
54	Ammonium directed dihydroxylation of N,N-dibenzylaminocyclohex-2-ene: metal-free syntheses of the diastereoisomers of 3-dibenzylamino-1,2-dihydroxycyclohexane. Chemical Communications, 2005, , 4536.	2.2	14

#	Article	IF	CITATIONS
55	Parallel kinetic resolution of tert-butyl (RS)-3-alkyl–cyclopentene-1-carboxylates for the asymmetric synthesis of 3-alkyl–cispentacin derivatives. Organic and Biomolecular Chemistry, 2004, 2, 3355-3362.	1.5	40
56	Stereodivergent and Regioselective Synthesis of 3,4-cis- and 3,4-trans-Pyrrolidinediols from α-Amino Acids. Organic Letters, 2004, 6, 2273-2276.	2.4	23
57	Preparation of methyl (1R,2S,5S)- and (1S,2R,5R)-2-amino-5-tert-butyl-cyclopentane-1-carboxylates by parallel kinetic resolution of methyl (RS)-5-tert-butyl-cyclopentene-1-carboxylate. Chemical Communications, 2003, , 2410-2411.	2.2	41
58	Hiding in Plain Sight: The Issue of Hidden Variables. ACS Chemical Biology, 0, , .	1.6	1