
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2558893/publications.pdf Version: 2024-02-01

ABDUS SAMAD

#	Article	IF	CITATIONS
1	Surrogate-based design optimization of a centrifugal pump impeller. Engineering Optimization, 2022, 54, 1395-1412.	2.6	14
2	Passive Flow Control Methods for Performance Augmentation in Air Turbines Used for Wave Energy Conversion—A Review. Ocean Engineering & Oceanography, 2022, , 419-444.	0.2	0
3	Centrifugal pump performance enhancement: Effect of splitter blade and optimization. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2022, 236, 391-402.	1.4	10
4	Wells Turbine as a Power Take-Off Mechanism for Wave Energy Converters. Ocean Engineering & Oceanography, 2022, , 365-396.	0.2	0
5	Effect of blade skew, endplate and casing groove on the aerodynamic performance of Wells turbine for OWC: a review. Journal of Physics: Conference Series, 2022, 2217, 012070.	0.4	2
6	Numerical modelling and design of a small-scale wave-powered desalination system. Ocean Engineering, 2022, 256, 111419.	4.3	4
7	Experimental Investigation of a Bidirectional Impulse Turbine for Oscillating Flows at Various Resistive Loads. IEEE Journal of Oceanic Engineering, 2021, 46, 115-131.	3.8	4
8	Combined Casing Groove and Blade Tip Treatment for Wave Energy Harvesting Turbine. Lecture Notes in Mechanical Engineering, 2021, , 1027-1040.	0.4	3
9	Surrogate based optimization of a Bi-Directional impulse turbine for OWC-WEC: Effect of guide vane lean and stagger angle for pseudo-sinusoidal wave conditions. Ocean Engineering, 2021, 226, 108843.	4.3	7
10	High-performance ocean energy harvesting turbine design – A strategy of compound leaning. Journal of Physics: Conference Series, 2021, 1909, 012055.	0.4	0
11	Wave energy harvesting impulse turbine having ring type blade: Experiments with unsteady flow. Ocean Engineering, 2021, 236, 109553.	4.3	1
12	Design optimization of a marine current turbine having winglet on blade. Ocean Engineering, 2021, 239, 109877.	4.3	4
13	Marine power technology—wave energy. , 2021, , 241-267.		4
14	Radiused Edge Blade Tip for a Wider Operating Range in Wells Turbine. Arabian Journal for Science and Engineering, 2021, 46, 2663-2676.	3.0	6
15	Numerical analysis of damping induced by impulse turbines for wave energy conversion. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2021, 235, 448-462.	0.5	1
16	Experimental study of Wells turbine with multiparameter modification for wave energy conversion. , 2021, , .		0
17	Hydrostructural Optimization of a Marine Current Turbine Through Multi-fidelity Numerical Models. Arabian Journal for Science and Engineering, 2020, 45, 935-952.	3.0	3
18	Nature-inspired design of a turbine blade harnessing wave energy. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2020, 234, 670-689.	1.4	3

#	Article	IF	CITATIONS
19	Influence of stall fences on the performance of Wells turbine. Energy, 2020, 194, 116864.	8.8	32
20	Experimental Analysis of a Biplane Wells Turbine under Different Load Conditions. Energy, 2020, 206, 118205.	8.8	19
21	Introducing Gurney flap to Wells turbine blade and performance analysis with OpenFOAM. Ocean Engineering, 2019, 187, 106212.	4.3	27
22	Optimization based higher order sliding mode controller for efficiency improvement of a wave energy converter. Energy, 2019, 187, 116111.	8.8	14
23	A performance analysis of tidal turbine conversion system based on control strategies. Energy Procedia, 2019, 160, 526-533.	1.8	6
24	Performance enhancement of an impulse turbine for OWC using grouped grey wolf optimizer based controller. Ocean Engineering, 2019, 190, 106425.	4.3	11
25	Performance enhancement of Wells turbine: Combined radiused edge blade tip, static extended trailing edge, and variable thickness modifications. Ocean Engineering, 2019, 185, 47-58.	4.3	32
26	Computational and Experimental Study of Sand Entrapment in a Hydrocyclone During Desanding Operations in Oil Fields: Consequences for Leakage and Separation Efficiency. SPE Production and Operations, 2019, 34, 520-535.	0.6	4
27	On the optimal morphology and performance of a modeled dragonfly airfoil in gliding mode. Physics of Fluids, 2019, 31, 051904.	4.0	6
28	Optimization with Surrogate Models: Flow and Heat Transfer Applications. Mathematical Problems in Engineering, 2019, 2019, 1-2.	1.1	0
29	High-performance ocean energy harvesting turbine design – Detailed flow analysis with blade leaning strategy. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2019, 233, 379-396.	1.4	5
30	CFD-based analysis for finding critical wall roughness on centrifugal pump at design and off-design conditions. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	1.6	10
31	Multi-fidelity optimization of blade thickness parameters for a horizontal axis tidal stream turbine. Renewable Energy, 2019, 135, 277-287.	8.9	26
32	Surrogate-Based Optimization of a Biplane Wells Turbine. Lecture Notes in Civil Engineering, 2019, , 639-648.	0.4	0
33	Hysteresis Behavior for Wave Energy Conversion Device Under Alternative Axial Flow Conditions. Lecture Notes in Civil Engineering, 2019, , 717-723.	0.4	0
34	Control-Oriented Wave to Wire Model of Oscillating Water Column. Lecture Notes in Civil Engineering, 2019, , 705-716.	0.4	0
35	Development of a reduced order wave to wire model of an OWC wave energy converter for control system analysis. Ocean Engineering, 2019, 172, 614-628.	4.3	25
36	Performance Analysis of an Air Turbine for Ocean Energy Extraction Using CFD Technique. Journal of the Institution of Engineers (India): Series C, 2019, 100, 523-530.	1.2	1

#	Article	IF	CITATIONS
37	The Effect of Midplane Guide Vanes in a Biplane Wells Turbine. Journal of Fluids Engineering, Transactions of the ASME, 2019, 141, .	1.5	4
38	Effect of Guide Vane Fillets on Wave Energy Harvesting Impulse Turbine. , 2019, , .		0
39	High efficiency design of an impulse turbine used in oscillating water column to harvest wave energy. Renewable Energy, 2018, 121, 344-354.	8.9	44
40	Wave energy conversion: Design and shape optimization. Ocean Engineering, 2018, 150, 337-351.	4.3	40
41	Performance prediction of kinetic and screw pumps delivering slurry. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2018, 232, 898-911.	1.4	2
42	Performance prediction of a centrifugal pump delivering non-Newtonian slurry. Particulate Science and Technology, 2018, 36, 38-45.	2.1	10
43	Shape optimization of a bidirectional impulse turbine via surrogate models. Engineering Applications of Computational Fluid Mechanics, 2018, 12, 1-12.	3.1	117
44	Wave Energy Harvesting Turbine: Effect of Hub-To-Tip Profile Modification. International Journal of Fluid Machinery and Systems, 2018, 11, 55-62.	0.2	8
45	A numerical analysis of casing groove parameters on the performance of wave energy conversion device. International Journal of Aerodynamics, 2018, 6, 125.	0.1	0
46	Performance Analysis of Wells Turbine With Radiused Blade Tip. , 2018, , .		3
47	Experimental analysis of turbine-chamber coupling for wave energy conversion. International Journal of Energy Research, 2018, 42, 4770-4782.	4.5	5
48	Blood Flow and Mixing Analysis in Split-and-Recombine Micromixer With Offset Fluid Inlets. , 2018, , .		1
49	Design Optimization of the Centrifugal Pumps via Low Fidelity Models. Mathematical Problems in Engineering, 2018, 2018, 1-14.	1.1	14
50	Effect of Blade Profiles on the performance of Bidirectional Wave Energy Turbine. MATEC Web of Conferences, 2018, 172, 06002.	0.2	1
51	Performance Optimization of Centrifugal Pump for Crude Oil Delivery. Journal of Engineering Research, 2018, 15, 88.	0.2	5
52	Improved design of a Wells turbine for higher operating range. Renewable Energy, 2017, 106, 122-134.	8.9	68
53	Combined effects of viscosity and surface roughness on electric submersible pump performance. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2017, 231, 303-316.	1.4	5
54	Experimental and Numerical Investigation of the Performance of a Centrifugal Pump When Pumping Water and Light Crude Oil. Arabian Journal for Science and Engineering, 2017, 42, 4605-4615.	3.0	9

#	Article	IF	CITATIONS
55	Torque and efficiency maximization for a wave energy harvesting turbine: an approach to modify multiple design variables. International Journal of Energy Research, 2017, 41, 1014-1028.	4.5	10
56	Optimal design of air turbines for oscillating water column wave energy systems: A review. The International Journal of Ocean and Climate Systems, 2017, 8, 37-49.	0.8	31
57	Numerical optimization of Wells turbine for wave energy extraction. International Journal of Naval Architecture and Ocean Engineering, 2017, 9, 11-24.	2.3	41
58	Evaluation of Impulse Turbines for a Wave Energy Converter. , 2017, , .		1
59	Surface Roughness Effect on Performance of an Electric Submersible Pump. , 2017, , .		1
60	Design and Analysis of a Marine Current Turbine. , 2017, , .		3
61	Leakage flow correlation of a progressive cavity pump delivering shear thinning non-Newtonian fluids. International Journal of Oil, Gas and Coal Technology, 2017, 16, 166.	0.2	5
62	An alternative approach to surrogate averaging for a centrifugal impeller shape optimisation. International Journal of Computer Aided Engineering and Technology, 2017, 9, 62.	0.2	4
63	Effects of crude oil-water emulsions at various water-cut on the performance of the centrifugal pump. International Journal of Oil, Gas and Coal Technology, 2017, 16, 71.	0.2	5
64	An alternative approach to surrogate averaging for a centrifugal impeller shape optimisation. International Journal of Computer Aided Engineering and Technology, 2017, 9, 62.	0.2	3
65	FILM-COOLING CHARACTERISTICS OF UPSTREAM RAMP ENHANCED TURBINE BLADE SURFACE COOLING. Heat Transfer Research, 2017, 48, 969-984.	1.6	2
66	Effects of crude oil-water emulsions at various water-cut on the performance of the centrifugal pump. International Journal of Oil, Gas and Coal Technology, 2017, 16, 71.	0.2	1
67	Leakage flow correlation of a progressive cavity pump delivering shear thinning non-Newtonian fluids. International Journal of Oil, Gas and Coal Technology, 2017, 16, 166.	0.2	0
68	Optimization of a Centrifugal Pump Impeller by Controlling Blade Profile Parameters. , 2016, , .		6
69	Numerical Analysis of Fluid Flow Through an Electrical Submersible Pump for Handling Viscous Liquid. , 2016, , .		0
70	Marine Energy Turbine Performance: Effect of Blade Sweep. Energy Procedia, 2016, 90, 245-249.	1.8	1
71	Optimal Wells turbine speeds at different wave conditions. International Journal of Marine Energy, 2016, 16, 133-149.	1.8	31
72	Pumping crude oil by centrifugal impeller having different blade angles and surface roughness. Journal of Petroleum Exploration and Production, 2016, 6, 117-127.	2.4	16

#	Article	IF	CITATIONS
73	Surface wave effect on marine current turbine, modelling and analysis. , 2016, , .		4
74	Modeling and controller implementation of tidal turbine for Indian remote islands. , 2016, , .		2
75	A comparative study of kriging variants for the optimization of a turbomachinery system. Engineering With Computers, 2016, 32, 49-59.	6.1	18
76	Application of computational fluid dynamics and surrogate-coupled evolutionary computing to enhance centrifugal-pump performance. Engineering Applications of Computational Fluid Mechanics, 2016, 10, 171-181.	3.1	25
77	Flow analysis of airfoil having different cavities on its suction surface. Progress in Computational Fluid Dynamics, 2016, 16, 67.	0.2	13
78	Comparative Performance Analysis of Microjet Impingement Cooling Models with Different Spent-Flow Schemes. Journal of Thermophysics and Heat Transfer, 2016, 30, 466-472.	1.6	12
79	Optimal designs of an ESP to handle upto 10% GVF. International Journal of Oil, Gas and Coal Technology, 2016, 13, 338.	0.2	1
80	Wave Energy Harvesting Turbine: Performance Enhancement. Procedia Engineering, 2015, 116, 97-102.	1.2	13
81	Numerical Analysis of Centrifugal Impeller for Different Viscous Liquids. International Journal of Fluid Machinery and Systems, 2015, 8, 36-45.	0.2	9
82	Spent Flow Effects of Multiple Micro-Jet Impingement Cooling Models. , 2015, , .		0
83	Jet Pump Design Optimization by Multi-Surrogate Modeling. Journal of the Institution of Engineers (India): Series C, 2015, 96, 13-19.	1.2	4
84	High performance ocean energy harvesting turbine design–A new casing treatment scheme. Energy, 2015, 86, 219-231.	8.8	67
85	Casing Treatment of a Wave Energy Extracting Turbine. Aquatic Procedia, 2015, 4, 516-521.	0.9	11
86	Multi-objective optimization of a bidirectional impulse turbine. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2015, 229, 584-596.	1.4	7
87	Multiple surrogate based optimization of a bidirectional impulse turbine for wave energy conversion. Renewable Energy, 2015, 74, 749-760.	8.9	62
88	Effectiveness of meta-models for multi-objective optimization of centrifugal impeller. Journal of Mechanical Science and Technology, 2014, 28, 4947-4957.	1.5	19
89	Effect of Guide Vane Angle on Wells Turbine Performance. , 2014, , .		4
90	Improvement of Efficiency by Design Optimization of a Centrifugal Pump Impeller. , 2014, , .		9

#	Article	IF	CITATIONS
91	Efficiency Enhancement of Bidirectional Impulse Turbine Using Artificial Neural Network. , 2014, , .		1
92	Numerical Analysis of Flare Gas Recovery Ejector. , 2014, , .		0
93	Performance Enhancement of an Electric Submersible Pump. , 2014, , .		0
94	Performance analysis of an ejector for flare gas recovery. Geosystem Engineering, 2014, 17, 169-177.	1.4	3
95	Surrogate Assisted Design Optimization of an Air Turbine. International Journal of Rotating Machinery, 2014, 2014, 1-8.	0.8	8
96	Oscillating water column wave energy system — A prospective. , 2014, , .		1
97	Analysis of Flow through Ocean Energy Harvesting Bidirectional Impulse Turbine. The International Journal of Ocean and Climate Systems, 2014, 5, 51-63.	0.8	6
98	Exit Blade Angle and Roughness Effect on Centrifugal Pump Performance. , 2013, , .		2
99	Review of air turbines for wave energy conversion. , 2013, , .		1
100	Vortex Trapping by Different Cavities on an Airfoil. Wind Engineering, 2013, 37, 469-482.	1.9	7
101	Flow Analyses Inside Jet Pumps Used for Oil Wells. International Journal of Fluid Machinery and Systems, 2013, 6, 1-10.	0.2	9
102	Enhancement of Film Cooling Effectiveness Using Upstream Ramp. , 2012, , .		2
103	Swirl Induced Flow Through a Venturi-Ejector. , 2012, , .		1
104	Gas Interference in Sucker Rod Pump. , 2010, , .		3
105	Optimum design of a channel roughened by dimples to improve cooling performance. Frontiers of Energy and Power Engineering in China, 2010, 4, 262-268.	0.4	Ο
106	Shape Optimization of a Dimpled Channel to Enhance Heat Transfer Using a Weighted-Average Surrogate Model. Heat Transfer Engineering, 2010, 31, 1114-1124.	1.9	22
107	Application of Surrogate Modeling to Design of A Compressor Blade to Optimize Stacking and Thickness. International Journal of Fluid Machinery and Systems, 2009, 2, 1-12.	0.2	18
108	Surrogate Based Optimization Techniques for Aerodynamic Design of Turbomachinery. International Journal of Fluid Machinery and Systems, 2009, 2, 179-188.	0.2	57

#	Article	IF	CITATIONS
109	Multi-objective optimization of a dimpled channel for heat transfer augmentation. Heat and Mass Transfer, 2008, 45, 207-217.	2.1	31
110	Multi-objective optimization of an axial compressor blade. Journal of Mechanical Science and Technology, 2008, 22, 999-1007.	1.5	44
111	Design optimization of low-speed axial flow fan blade with three-dimensional RANS analysis. Journal of Mechanical Science and Technology, 2008, 22, 1864-1869.	1.5	63
112	Multiple Surrogate Modeling for Axial Compressor Blade Shape Optimization. Journal of Propulsion and Power, 2008, 24, 301-310.	2.2	163
113	Shape optimization of an axial compressor blade by multi-objective genetic algorithm. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2008, 222, 599-611.	1.4	54
114	Optimization of a Channel Roughened by Dimples on Opposite Surfaces for Heat Transfer Enhancement. , 2008, , .		0
115	Stacking and Thickness Optimization of a Compressor Blade Using Weighted Average Surrogate Model. , 2008, , .		1
116	Multi-Objective Optimization of Cooling Channel Roughened by Dimples. Journal of Fluid Science and Technology, 2008, 3, 754-763.	0.6	8
117	Optimization of Stacking Line and Blade Profile for Design of Axial Flow Fan Blade. , 2008, , .		0
118	Blade Optimization of a Transonic Compressor Using a Multiple Surrogate Model. Transactions of the Korean Society of Mechanical Engineers, B, 2008, 32, 317-326.	0.1	2
119	Surrogate Modeling for Optimization of Dimpled Channel to Enhance Heat Transfer Performance. Journal of Thermophysics and Heat Transfer, 2007, 21, 667-671.	1.6	29
120	Multi Objective Optimization of a Turbomachinery Blade Using NSGA-II. , 2007, , 885.		2
121	Shape Optimization of Turbomachinery Blade Using Multiple Surrogate Models. , 2006, , 827.		10
122	Optimal Design of Swept, Leaned and Skewed Blades in a Transonic Axial Compressor. , 2006, , 1279.		12