Nicholas Lachlan Opie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2558755/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The potential of closedâ€loop endovascular neurostimulation as a viable therapeutic approach for drugâ€resistant epilepsy: A critical review. Artificial Organs, 2022, 46, 337-348.	1.0	3
2	Motor neuroprosthesis implanted with neurointerventional surgery improves capacity for activities of daily living tasks in severe paralysis: first in-human experience. Journal of NeuroInterventional Surgery, 2021, 13, 102-108.	2.0	106
3	Sensor Modalities for Brain-Computer Interface Technology: A Comprehensive Literature Review. Neurosurgery, 2020, 86, E108-E117.	0.6	47
4	Mechanical suitability of an endovascular braincomputer interface. , 2020, , .		2
5	Endovascular Neuromodulation: Safety Profile and Future Directions. Frontiers in Neurology, 2020, 11, 351.	1.1	16
6	Distinct Neural Correlates Underlie Inhibitory Mechanisms of Motor Inhibition and Motor Imagery Restraint. Frontiers in Behavioral Neuroscience, 2020, 14, 77.	1.0	4
7	<italic>In Vivo</italic> Impedance Characterization of Cortical Recording Electrodes Shows Dependence on Electrode Location and Size. IEEE Transactions on Biomedical Engineering, 2019, 66, 675-681.	2.5	11
8	Removing the need for invasive brain surgery: the potential of stent electrodes. Bioelectronics in Medicine, 2019, 2, 9-11.	2.0	3
9	Neural Stimulation with an Endovascular Brain-Machine Interface. , 2019, , .		6
10	Near-Field Wireless Power Transfer to Stent-Based Biomedical Implants. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2018, 2, 193-200.	2.3	27
11	Spatially dynamic recurrent information flow across longâ€range dorsal motor network encodes selective motor goals. Human Brain Mapping, 2018, 39, 2635-2650.	1.9	9
12	An ovine model of cerebral catheter venography for implantation of an endovascular neural interface. Journal of Neurosurgery, 2018, 128, 1020-1027.	0.9	23
13	7T-fMRI: Faster temporal resolution yields optimal BOLD sensitivity for functional network imaging specifically at high spatial resolution. NeuroImage, 2018, 164, 214-229.	2.1	27
14	Visual evoked potentials determine chronic signal quality in a stent-electrode endovascular neural interface. Biomedical Physics and Engineering Express, 2018, 4, 055018.	0.6	8
15	A Stent-Based Power and Data Link for Sensing Intravascular Biological Indicators. , 2018, 2, 1-4.		5
16	Effect of Implant Duration, Anatomical Location and Electrode Orientation on Bandwidth Recorded with a Chronically Implanted Endovascular Stent-Electrode Array. , 2018, 2018, 1074-1077.		1
17	Cortical Brain Stimulation with Endovascular Electrodes. , 2018, 2018, 3088-3091.		7
18	Focal stimulation of the sheep motor cortex with a chronically implanted minimally invasive electrode array mounted on an endovascular stent. Nature Biomedical Engineering, 2018, 2, 907-914.	11.6	77

NICHOLAS LACHLAN OPIE

19 Feasibility of identifyin multimodal classificati	ng the ideal locations for motor intention decoding using unimodal and ion at 7T-fMRI. Scientific Reports, 2018, 8, 15556.	1.6	4
20 Signal quality of simula comparable. Scientific	taneously recorded endovascular, subdural and epidural signals are Reports, 2018, 8, 8427.	1.6	31
Optimized partial-cove 21 stripping and co-regist Resonance Materials ir	erage functional analysis pipeline (OPFAP): a semi-automated pipeline for skull tration of partial-coverage, ultra-high-field functional images. Magnetic n Physics, Biology, and Medicine, 2018, 31, 621-632.	1.1	4
22 The ovine motor corte Biobehavioral Reviews	x: A review of functional mapping and cytoarchitecture. Neuroscience and , 2017, 80, 306-315.	2.9	23
23 Micro-CT and Histolog Transactions on Biome	rical Evaluation of an Neural Interface Implanted Within a Blood Vessel. IEEE edical Engineering, 2017, 64, 928-934.	2.5	35
Advanced Imaging of I in Neurology, 2017, 8,	ntracranial Atherosclerosis: Lessons from Interventional Cardiology. Frontiers , 387.	1.1	16
25 Development and Imp 25 Segmentation. PLoS C	lementation of a Corriedale Ovine Brain Atlas for Use in Atlas-Based DNE, 2016, 11, e0155974.	1.1	14
26 The evolution of endov applications. Neurosur	vascular electroencephalography: historical perspective and future rgical Focus, 2016, 40, E7.	1.0	22
Suitability of nitinol ele 27 2016, 4463-4466.	ectrodes in neural prostheses such as endovascular neural interfaces. , 2016,		2
28 Chronic impedance sp Engineering, 2016, 13	ectroscopy of an endovascular stent-electrode array. Journal of Neural , 046020.	1.8	35
29 Feasibility of a chronic	, minimally invasive endovascular neural interface. , 2016, 2016, 4455-4458.		10
30 Development of a Mag E12-24.	gnetic Attachment Method for Bionic Eye Applications. Artificial Organs, 2016, 40,	1.0	9
Minimally invasive end 31 cortical neural activity.	lovascular stent-electrode array for high-fidelity, chronic recordings of . Nature Biotechnology, 2016, 34, 320-327.	9.4	210
Reproducibility of an ir 32 anaesthetized children 378-385.	nstrumented measure for passive ankle dorsiflexion in conscious and n with cerebral palsy. Developmental Medicine and Child Neurology, 2014, 56,	1.1	7
33 Optical Coherence Tor Curvature and Thickne	mographyâ€Guided Retinal Prosthesis Design: Model of Degenerated Retinal ess for Patientâ€Specific Devices. Artificial Organs, 2014, 38, E82-94.	1.0	9
34 First-in-Human Trial of	a Novel Suprachoroidal Retinal Prosthesis. PLoS ONE, 2014, 9, e115239.	1.1	274
35 Development of a surg prosthesis. Clinical and	gical procedure for implantation of a prototype suprachoroidal retinal d Experimental Ophthalmology, 2014, 42, 665-674.	1.3	44

Current steering for high resolution retinal implants. , 2013, 2013, 2760-3.

1

#	Article	IF	CITATIONS
37	Retinal Prosthesis Safety: Alterations in Microglia Morphology due to Thermal Damage and Retinal Implant Contact. , 2012, 53, 7802.		26
38	Heating of the Eye by a Retinal Prosthesis: Modeling, Cadaver and In Vivo Study. IEEE Transactions on Biomedical Engineering, 2012, 59, 339-345.	2.5	46
39	Thermal heating of a retinal prosthesis: Thermal model and in-vitro study. , 2010, 2010, 1597-600.		10