
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2558571/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Motherâ€child cardiometabolic health 4–10Âyears after pregnancy complicated by obesity with and without gestational diabetes. Obesity Science and Practice, 2022, 8, 627-640.	1.9	3
2	Glucagon-receptor signaling regulates weight loss via central KLB receptor complexes. JCI Insight, 2021, 6, .	5.0	8
3	Glucagon's Metabolic Action in Health and Disease. , 2021, 11, 1759-1783.		21
4	Sam68 promotes hepatic gluconeogenesis via CRTC2. Nature Communications, 2021, 12, 3340.	12.8	12
5	Ablation of Sam68 in adult mice increases thermogenesis and energy expenditure. FASEB Journal, 2021, 35, e21772.	0.5	2
6	Mito-Mendelian interactions alter in vivo glucose metabolism and insulin sensitivity in healthy mice. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E521-E529.	3.5	8
7	The transcriptional co-regulator LDB1 is required for brown adipose function. Molecular Metabolism, 2021, 53, 101284.	6.5	Ο
8	Glucagon-Receptor Signaling Reverses Hepatic Steatosis Independent of Leptin Receptor Expression. Endocrinology, 2020, 161, .	2.8	10
9	Highâ€Fat and Highâ€Sucrose Diets Impair Timeâ€ofâ€Day Differences in Spatial Working Memory of Male Mice. Obesity, 2020, 28, 2347-2356.	3.0	14
10	Increased Glucose Availability Attenuates Myocardial Ketone Body Utilization. Journal of the American Heart Association, 2020, 9, e013039.	3.7	41
11	In utero nutritional stress as a cause of obesity: Altered relationship between body fat, leptin levels and caloric intake in offspring into adulthood. Life Sciences, 2020, 254, 117764.	4.3	11
12	A Small Molecule, UAB126, Reverses Diet-Induced Obesity and its Associated Metabolic Disorders. Diabetes, 2020, 69, 2003-2016.	0.6	10
13	Revisiting the Pharmacological Value of Glucagon: An Editorial for the Special Issue "The Biology and Pharmacology of Glucagonâ€: International Journal of Molecular Sciences, 2020, 21, 383.	4.1	0
14	Glucagon Regulation of Energy Expenditure. International Journal of Molecular Sciences, 2019, 20, 5407.	4.1	70
15	The islet-expressed Lhx1 transcription factor interacts with Islet-1 and contributes to glucose homeostasis. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E397-E409.	3.5	11
16	Dietary Manipulations That Induce Ketosis Activate the HPA Axis in Male Rats and Mice: A Potential Role for Fibroblast Growth Factor-21. Endocrinology, 2018, 159, 400-413.	2.8	28
17	Hepatic Glucagon Receptor Signaling Enhances Insulin-Stimulated Glucose Disposal in Rodents. Diabetes, 2018, 67, 2157-2166.	0.6	44
18	Deletion of the glucagon receptor gene before and after experimental diabetes reveals differential protection from hyperglycemia. Molecular Metabolism, 2018, 17, 28-38.	6.5	17

#	Article	IF	CITATIONS
19	Antiretroviral therapy potentiates high-fat diet induced obesity and glucose intolerance. Molecular Metabolism, 2018, 12, 48-61.	6.5	17
20	Glucagon Receptor Signaling Regulates Energy Metabolism via Hepatic Farnesoid X Receptor and Fibroblast Growth Factor 21. Diabetes, 2018, 67, 1773-1782.	0.6	54
21	LDB1 Regulates Energy Homeostasis During Diet-Induced Obesity. Endocrinology, 2017, 158, 1289-1297.	2.8	10
22	Duodenal endoluminal barrier sleeve alters gut microbiota of ZDF rats. International Journal of Obesity, 2017, 41, 381-389.	3.4	17
23	Fibroblast activation protein (FAP) as a novel metabolic target. Molecular Metabolism, 2016, 5, 1015-1024.	6.5	56
24	Chemical Hybridization of Glucagon and Thyroid Hormone Optimizes Therapeutic Impact for Metabolic Disease. Cell, 2016, 167, 843-857.e14.	28.9	153
25	Fibroblast growth factor 21 is required for beneficial effects of exercise during chronic high-fat feeding. Journal of Applied Physiology, 2016, 121, 687-698.	2.5	33
26	Ghrelin. Molecular Metabolism, 2015, 4, 437-460.	6.5	810
27	FGF21 is not required for glucose homeostasis, ketosis or tumour suppression associated with ketogenic diets in mice. Diabetologia, 2015, 58, 2414-2423.	6.3	37
28	A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nature Medicine, 2015, 21, 27-36.	30.7	481
29	GLP-1R Responsiveness Predicts Individual Gastric Bypass Efficacy on Glucose Tolerance in Rats. Diabetes, 2014, 63, 505-513.	0.6	40
30	Both Acyl and Des-Acyl Ghrelin Regulate Adiposity and Glucose Metabolism via Central Nervous System Ghrelin Receptors. Diabetes, 2014, 63, 122-131.	0.6	100
31	Chromium enhances insulin responsiveness via AMPK. Journal of Nutritional Biochemistry, 2014, 25, 565-572.	4.2	48
32	Duodenal nutrient exclusion improves metabolic syndrome and stimulates villus hyperplasia. Gut, 2014, 63, 1238-1246.	12.1	46
33	Unimolecular Dual Incretins Maximize Metabolic Benefits in Rodents, Monkeys, and Humans. Science Translational Medicine, 2013, 5, 209ra151.	12.4	461
34	Fibroblast Growth Factor 21 Mediates Specific Glucagon Actions. Diabetes, 2013, 62, 1453-1463.	0.6	191
35	The orphan receptor Gpr83 regulates systemic energy metabolism via ghrelin-dependent and ghrelin-independent mechanisms. Nature Communications, 2013, 4, 1968.	12.8	64
36	High-Density Lipoprotein Maintains Skeletal Muscle Function by Modulating Cellular Respiration in Mice. Circulation, 2013, 128, 2364-2371.	1.6	73

#	Article	IF	CITATIONS
37	GLP-1R Agonism Enhances Adjustable Gastric Banding in Diet-Induced Obese Rats. Diabetes, 2013, 62, 3261-3267.	0.6	19
38	p62 Links Î ² -adrenergic input to mitochondrial function and thermogenesis. Journal of Clinical Investigation, 2013, 123, 469-478.	8.2	107
39	MC4R Dimerization in the Paraventricular Nucleus and GHSR/MC3R Heterodimerization in the Arcuate Nucleus: Is There Relevance for Body Weight Regulation?. Neuroendocrinology, 2012, 95, 277-288.	2.5	35
40	Role of adipose and hepatic atypical protein kinase C lambda (PKCλ) in the development of obesity and glucose intolerance. Adipocyte, 2012, 1, 203-214.	2.8	6
41	AMPK Enhances Insulin-Stimulated GLUT4 Regulation via Lowering Membrane Cholesterol. Endocrinology, 2012, 153, 2130-2141.	2.8	103
42	Acylation Type Determines Ghrelin's Effects on Energy Homeostasis in Rodents. Endocrinology, 2012, 153, 4687-4695.	2.8	16
43	Sirtuin 1 and Sirtuin 3: Physiological Modulators of Metabolism. Physiological Reviews, 2012, 92, 1479-1514.	28.8	551
44	Caloric Restriction Chronically Impairs Metabolic Programming in Mice. Diabetes, 2012, 61, 2734-2742.	0.6	30
45	Targeted estrogen delivery reverses the metabolic syndrome. Nature Medicine, 2012, 18, 1847-1856.	30.7	241
46	The GOAT-Ghrelin System Is Not Essential for Hypoglycemia Prevention during Prolonged Calorie Restriction. PLoS ONE, 2012, 7, e32100.	2.5	48
47	Restoration of leptin responsiveness in dietâ€induced obese mice using an optimized leptin analog in combination with exendinâ€4 or FGF21. Journal of Peptide Science, 2012, 18, 383-393.	1.4	133
48	Carbohydrate Content of Post-operative Diet Influences the Effect of Vertical Sleeve Gastrectomy on Body Weight Reduction in Obese Rats. Obesity Surgery, 2012, 22, 140-151.	2.1	8
49	Fat-induced membrane cholesterol accrual provokes cortical filamentous actin destabilisation and glucose transport dysfunction in skeletal muscle. Diabetologia, 2012, 55, 457-467.	6.3	45
50	A Role for Astrocytes in the Central Control of Metabolism. Neuroendocrinology, 2011, 93, 143-149.	2.5	52
51	Ghrelin receptor deficiency does not affect diet-induced atherosclerosis in low-density lipoprotein receptor-null mice. Frontiers in Endocrinology, 2011, 2, 67.	3.5	8
52	Evidence Coupling Increased Hexosamine Biosynthesis Pathway Activity to Membrane Cholesterol Toxicity and Cortical Filamentous Actin Derangement Contributing to Cellular Insulin Resistanceâ€. Endocrinology, 2011, 152, 3373-3384.	2.8	23
53	The metabolic actions of glucagon revisited. Nature Reviews Endocrinology, 2010, 6, 689-697.	9.6	292
54	CNS Leptin Action Modulates Immune Response and Survival in Sepsis. Journal of Neuroscience, 2010, 30, 6036-6047.	3.6	86

#	Article	IF	CITATIONS
55	Glucagon regulation of energy metabolism. Physiology and Behavior, 2010, 100, 545-548.	2.1	62
56	Hexosamine Biosynthesis Pathway Flux Contributes to Insulin Resistance via Altering Membrane Phosphatidylinositol 4,5-Bisphosphate and Cortical Filamentous Actin. Endocrinology, 2009, 150, 1636-1645.	2.8	10
57	Development of Congenic Rat Strains for Alcohol Consumption Derived from the Alcohol-Preferring and Nonpreferring Rats. Behavior Genetics, 2006, 36, 285-290.	2.1	20
58	Effect of polymorphism on expression of the neuropeptide Y gene in inbred alcohol-preferring and -nonpreferring rats. Neuroscience, 2005, 131, 871-876.	2.3	21
59	Glutathione S-Transferase 8-8 Expression Is Lower in Alcohol-Preferring Than in Alcohol-Nonpreferring Rats. Alcoholism: Clinical and Experimental Research, 2004, 28, 1622-1628.	2.4	29
60	Analyses of Quantitative Trait Loci Contributing to Alcohol Preference in HAD1/LAD1 and HAD2/LAD2 Rats. Alcoholism: Clinical and Experimental Research, 2003, 27, 1710-1717.	2.4	25