
Alexander Bukreyev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2558539/publications.pdf Version: 2024-02-01

ALEXANDED RUKDEVEN

#	Article	IF	CITATIONS
1	Asymmetric and non-stoichiometric glycoprotein recognition by two distinct antibodies results in broad protection against ebolaviruses. Cell, 2022, 185, 995-1007.e18.	13.5	26
2	Efficient discovery of SARS-CoV-2-neutralizing antibodies via B cell receptor sequencing and ligand blocking. Nature Biotechnology, 2022, 40, 1270-1275.	9.4	27
3	Functional interactomes of the Ebola virus polymerase identified by proximity proteomics in the context of viral replication. Cell Reports, 2022, 38, 110544.	2.9	7
4	Asymptomatic SARS-CoV-2 Infection Is Associated With Higher Levels of Serum IL-17C, Matrix Metalloproteinase 10 andÂFibroblast Growth Factors Than Mild Symptomatic COVID-19. Frontiers in Immunology, 2022, 13, 821730.	2.2	21
5	A single intranasal dose of human parainfluenza virus type 3-vectored vaccine induces effective antibody and memory T cell response in the lungs and protects hamsters against SARS-CoV-2. Npj Vaccines, 2022, 7, 47.	2.9	6
6	Ubiquitination of Ebola virus VP35 at lysine 309 regulates viral transcription and assembly. PLoS Pathogens, 2022, 18, e1010532.	2.1	6
7	Epitope-focused immunogen design based on the ebolavirus glycoprotein HR2-MPER region. PLoS Pathogens, 2022, 18, e1010518.	2.1	5
8	Proximity interactome analysis of Lassa polymerase reveals eRF3a/GSPT1 as a druggable target for host-directed antivirals. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
9	Inactivated rabies virus vectored SARS-CoV-2 vaccine prevents disease in a Syrian hamster model. PLoS Pathogens, 2021, 17, e1009383.	2.1	24
10	A Fc engineering approach to define functional humoral correlates of immunity against Ebola virus. Immunity, 2021, 54, 815-828.e5.	6.6	34
11	Convergence of a common solution for broad ebolavirus neutralization by glycan cap-directed human antibodies. Cell Reports, 2021, 35, 108984.	2.9	22
12	Broad and potently neutralizing monoclonal antibodies isolated from human survivors of New World hantavirus infection. Cell Reports, 2021, 35, 109086.	2.9	18
13	Cutting Edge: Distinct B Cell Repertoires Characterize Patients with Mild and Severe COVID-19. Journal of Immunology, 2021, 206, 2785-2790.	0.4	31
14	Antibody responses to filovirus infections in humans: protective or not?. Lancet Infectious Diseases, The, 2021, 21, e348-e355.	4.6	3
15	Antibody Responses to SARS-CoV-2 Following an Outbreak Among Marine Recruits With Asymptomatic or Mild Infection. Frontiers in Immunology, 2021, 12, 681586.	2.2	6
16	Ebola vaccine–induced protection in nonhuman primates correlates with antibody specificity and Fc-mediated effects. Science Translational Medicine, 2021, 13, .	5.8	22
17	Proteo-Genomic Analysis Identifies Two Major Sites of Vulnerability on Ebolavirus Glycoprotein for Neutralizing Antibodies in Convalescent Human Plasma. Frontiers in Immunology, 2021, 12, 706757.	2.2	4
18	SARS-CoV-2 seropositivity and subsequent infection risk in healthy young adults: a prospective cohort study. Lancet Respiratory Medicine,the, 2021, 9, 712-720.	5.2	136

#	Article	IF	CITATIONS
19	A single dose of replication-competent VSV-vectored vaccine expressing SARS-CoV-2 S1 protects against virus replication in a hamster model of severe COVID-19. Npj Vaccines, 2021, 6, 91.	2.9	19
20	Attenuated activation of pulmonary immune cells in mRNA-1273–vaccinated hamsters after SARS-CoV-2 infection. Journal of Clinical Investigation, 2021, 131, .	3.9	23
21	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	0.9	62
22	Potent neutralization of SARS-CoV-2 variants of concern by an antibody with an uncommon genetic signature and structural mode of spike recognition. Cell Reports, 2021, 37, 109784.	2.9	20
23	Dissecting strategies to tune the therapeutic potential of SARS-CoV-2–specific monoclonal antibody CR3022. JCI Insight, 2021, 6, .	2.3	34
24	Intracellular receptor EPAC regulates von Willebrand factor secretion from endothelial cells in a PI3K-/eNOS-dependent manner during inflammation. Journal of Biological Chemistry, 2021, 297, 101315.	1.6	5
25	COVA1-18 neutralizing antibody protects against SARS-CoV-2 in three preclinical models. Nature Communications, 2021, 12, 6097.	5.8	38
26	Effects of Overexpression of the Egyptian Fruit Bat Innate Immune Genes on Filovirus Infections in the Host Cells. Frontiers in Virology, 2021, 1, .	0.7	5
27	Pan-ebolavirus protective therapy by two multifunctional human antibodies. Cell, 2021, 184, 5593-5607.e18.	13.5	21
28	Development of a rapid point-of-care test that measures neutralizing antibodies to SARS-CoV-2. Journal of Clinical Virology, 2021, 145, 105024.	1.6	33
29	Global phosphoproteomic analysis of Ebola virions reveals a novel role for VP35 phosphorylation-dependent regulation of genome transcription. Cellular and Molecular Life Sciences, 2020, 77, 2579-2603.	2.4	8
30	Ebola Virus Produces Discrete Small Noncoding RNAs Independently of the Host MicroRNA Pathway Which Lack RNA Interference Activity in Bat and Human Cells. Journal of Virology, 2020, 94, .	1.5	14
31	Small Molecule Compounds That Inhibit Antioxidant Response Gene Expression in an Inducer-Dependent Manner. ACS Infectious Diseases, 2020, 6, 489-502.	1.8	1
32	Species-Specific Evolution of Ebola Virus during Replication in Human and Bat Cells. Cell Reports, 2020, 32, 108028.	2.9	17
33	Topoisomerase III-Î ² is required for efficient replication of positive-sense RNA viruses. Antiviral Research, 2020, 182, 104874.	1.9	17
34	Annexin A2 depletion exacerbates the intracerebral microhemorrhage induced by acute rickettsia and Ebola virus infections. PLoS Neglected Tropical Diseases, 2020, 14, e0007960.	1.3	9
35	Discovery of Marburg virus neutralizing antibodies from virus-naÃ ⁻ ve human antibody repertoires using large-scale structural predictions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31142-31148.	3.3	10
36	Modified vaccinia Ankara vaccine expressing Marburg virus-like particles protects guinea pigs from lethal Marburg virus infection. Npj Vaccines, 2020, 5, 78.	2.9	10

ALEXANDER BUKREYEV

#	Article	IF	CITATIONS
37	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	0.9	184
38	Analysis of a Therapeutic Antibody Cocktail Reveals Determinants for Cooperative and Broad Ebolavirus Neutralization. Immunity, 2020, 52, 388-403.e12.	6.6	71
39	Non-neutralizing Antibodies from a Marburg Infection Survivor Mediate Protection by Fc-Effector Functions and by Enhancing Efficacy of Other Antibodies. Cell Host and Microbe, 2020, 27, 976-991.e11.	5.1	43
40	Ebola virus-mediated T-lymphocyte depletion is the result of an abortive infection. PLoS Pathogens, 2019, 15, e1008068.	2.1	34
41	Targeting the Non-catalytic RVxF Site of Protein Phosphatase-1 With Small Molecules for Ebola Virus Inhibition. Frontiers in Microbiology, 2019, 10, 2145.	1.5	14
42	Taxonomy of the order Mononegavirales: second update 2018. Archives of Virology, 2019, 164, 1233-1244.	0.9	70
43	Taxonomy of the order Mononegavirales: update 2019. Archives of Virology, 2019, 164, 1967-1980.	0.9	224
44	Cross-reactive neutralizing human survivor monoclonal antibody BDBV223 targets the ebolavirus stalk. Nature Communications, 2019, 10, 1788.	5.8	24
45	Structural basis of broad ebolavirus neutralization by a human survivor antibody. Nature Structural and Molecular Biology, 2019, 26, 204-212.	3.6	30
46	Can Ebola Virus Vaccines Have Universal Immune Correlates of protection?. Trends in Microbiology, 2019, 27, 8-16.	3.5	32
47	Antibody-Mediated Protective Mechanisms Induced by a Trivalent Parainfluenza Virus-Vectored Ebolavirus Vaccine. Journal of Virology, 2019, 93, .	1.5	13
48	ICTV Virus Taxonomy Profile: Filoviridae. Journal of General Virology, 2019, 100, 911-912.	1.3	78
49	Taxonomy of the order Mononegavirales: update 2018. Archives of Virology, 2018, 163, 2283-2294.	0.9	153
50	The Marburgvirus-Neutralizing Human Monoclonal Antibody MR191 Targets a Conserved Site to Block Virus Receptor Binding. Cell Host and Microbe, 2018, 23, 101-109.e4.	5.1	40
51	Modified mRNA-Based Vaccines Elicit Robust Immune Responses and Protect Guinea Pigs From Ebola Virus Disease. Journal of Infectious Diseases, 2018, 217, 451-455.	1.9	119
52	A high throughput screen identifies benzoquinoline compounds as inhibitors of Ebola virus replication. Antiviral Research, 2018, 150, 193-201.	1.9	32
53	Staufen1 Interacts with Multiple Components of the Ebola Virus Ribonucleoprotein and Enhances Viral RNA Synthesis. MBio, 2018, 9, .	1.8	35
54	Role of Transmembrane Protein 16F in the Incorporation of Phosphatidylserine Into Budding Ebola Virus Virions. Journal of Infectious Diseases, 2018, 218, S335-S345.	1.9	13

Alexander Bukreyev

#	Article	IF	CITATIONS
55	Protein Phosphatase 1–Targeting Small-Molecule C31 Inhibits Ebola Virus Replication. Journal of Infectious Diseases, 2018, 218, S627-S635.	1.9	14
56	Ebola Virus Shed Glycoprotein Triggers Differentiation, Infection, and Death of Monocytes Through Toll-Like Receptor 4 Activation. Journal of Infectious Diseases, 2018, 218, S327-S334.	1.9	12
57	Multifunctional Pan-ebolavirus Antibody Recognizes a Site of Broad Vulnerability on the Ebolavirus Glycoprotein. Immunity, 2018, 49, 363-374.e10.	6.6	61
58	Broadly neutralizing antibodies from human survivors target a conserved site in the Ebola virus glycoprotein HR2–MPER region. Nature Microbiology, 2018, 3, 670-677.	5.9	68
59	Asymmetric antiviral effects of ebolavirus antibodies targeting glycoprotein stem and glycan cap. PLoS Pathogens, 2018, 14, e1007204.	2.1	16
60	Phosphorylated VP30 of Marburg Virus Is a Repressor of Transcription. Journal of Virology, 2018, 92, .	1.5	19
61	Inhibiting pyrimidine biosynthesis impairs Ebola virus replication through depletion of nucleoside pools and activation of innate immune responses. Antiviral Research, 2018, 158, 288-302.	1.9	73
62	Antibody Repertoires to the Same Ebola Vaccine Antigen Are Differentially Affected by Vaccine Vectors. Cell Reports, 2018, 24, 1816-1829.	2.9	8
63	Antibody-Dependent Enhancement of Ebola Virus Infection by Human Antibodies Isolated from Survivors. Cell Reports, 2018, 24, 1802-1815.e5.	2.9	64
64	Systematic Analysis of Monoclonal Antibodies against Ebola Virus GP Defines Features that Contribute to Protection. Cell, 2018, 174, 938-952.e13.	13.5	173
65	Disabling of lymphocyte immune response by Ebola virus. PLoS Pathogens, 2018, 14, e1006932.	2.1	23
66	OUP accepted manuscript. Journal of Infectious Diseases, 2018, 218, S418-S422.	1.9	6
67	Innate Immune Responses of Bat and Human Cells to Filoviruses: Commonalities and Distinctions. Journal of Virology, 2017, 91, .	1.5	52
68	A Sensitive in Vitro High-Throughput Screen To Identify Pan-filoviral Replication Inhibitors Targeting the VP35–NP Interface. ACS Infectious Diseases, 2017, 3, 190-198.	1.8	22
69	Taxonomy of the order Mononegavirales: update 2017. Archives of Virology, 2017, 162, 2493-2504.	0.9	173
70	The Toll-Like Receptor 4 Antagonist Eritoran Protects Mice from Lethal Filovirus Challenge. MBio, 2017, 8, .	1.8	41
71	Topoisomerase II Inhibitors Induce DNA Damage-Dependent Interferon Responses Circumventing Ebola Virus Immune Evasion. MBio, 2017, 8, .	1.8	70
72	Ebola Virus Binding to Tim-1 on T Lymphocytes Induces a Cytokine Storm. MBio, 2017, 8, .	1.8	97

ALEXANDER BUKREYEV

#	Article	IF	CITATIONS
73	Implementation of Objective PASC-Derived Taxon Demarcation Criteria for Official Classification of Filoviruses. Viruses, 2017, 9, 106.	1.5	22
74	Ebola virus glycoprotein directly triggers T lymphocyte death despite of the lack of infection. PLoS Pathogens, 2017, 13, e1006397.	2.1	58
75	Ebola VP40 in Exosomes Can Cause Immune Cell Dysfunction. Frontiers in Microbiology, 2016, 7, 1765.	1.5	62
76	Taxonomy of the order Mononegavirales: update 2016. Archives of Virology, 2016, 161, 2351-2360.	0.9	407
77	Topoisomerase 1 inhibition suppresses inflammatory genes and protects from death by inflammation. Science, 2016, 352, aad7993.	6.0	132
78	Proteoform-Specific Insights into Cellular Proteome Regulation. Molecular and Cellular Proteomics, 2016, 15, 3297-3320.	2.5	3
79	Possibility and Challenges of Conversion of Current Virus Species Names to Linnaean Binomials. Systematic Biology, 2016, 66, syw096.	2.7	17
80	Cross-Reactive and Potent Neutralizing Antibody Responses in Human Survivors of Natural Ebolavirus Infection. Cell, 2016, 164, 392-405.	13.5	160
81	Chimeric Filoviruses for Identification and Characterization of Monoclonal Antibodies. Journal of Virology, 2016, 90, 3890-3901.	1.5	41
82	The Ebola Interferon Inhibiting Domains Attenuate and Dysregulate Cell-Mediated Immune Responses. PLoS Pathogens, 2016, 12, e1006031.	2.1	35
83	Mechanism of Human Antibody-Mediated Neutralization of Marburg Virus. Cell, 2015, 160, 893-903.	13.5	130
84	Partial Attenuation of Respiratory Syncytial Virus with a Deletion of a Small Hydrophobic Gene Is Associated with Elevated Interleukin-11² Responses. Journal of Virology, 2015, 89, 8974-8981.	1.5	52
85	High-Throughput Minigenome System for Identifying Small-Molecule Inhibitors of Ebola Virus Replication. ACS Infectious Diseases, 2015, 1, 380-387.	1.8	59
86	Adapting High-Throughput Screening Methods and Assays for Biocontainment Laboratories. Assay and Drug Development Technologies, 2015, 13, 44-54.	0.6	12
87	Different Temporal Effects of Ebola Virus VP35 and VP24 Proteins on Global Gene Expression in Human Dendritic Cells. Journal of Virology, 2015, 89, 7567-7583.	1.5	50
88	Aerosolized Ebola vaccine protects primates and elicits lung-resident T cell responses. Journal of Clinical Investigation, 2015, 125, 3241-3255.	3.9	67
89	Filovirus RefSeq Entries: Evaluation and Selection of Filovirus Type Variants, Type Sequences, and Names. Viruses, 2014, 6, 3663-3682.	1.5	49
90	A BSL-4 High-Throughput Screen Identifies Sulfonamide Inhibitors of Nipah Virus. Assay and Drug Development Technologies, 2014, 12, 155-161.	0.6	24

Alexander Bukreyev

#	Article	IF	CITATIONS
91	Role of Protein Phosphatase 1 in Dephosphorylation of Ebola Virus VP30 Protein and Its Targeting for the Inhibition of Viral Transcription. Journal of Biological Chemistry, 2014, 289, 22723-22738.	1.6	76
92	The Lack of Maturation of Ebola Virus-Infected Dendritic Cells Results from the Cooperative Effect of at Least Two Viral Domains. Journal of Virology, 2013, 87, 7471-7485.	1.5	84
93	Neonatal antibody responses are attenuated by interferon-Î ³ produced by NK and T cells during RSV infection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5576-5581.	3.3	36
94	The Secreted G Protein of Human Respiratory Syncytial Virus Antagonizes Antibody-Mediated Restriction of Replication Involving Macrophages and Complement. Journal of Virology, 2012, 86, 10880-10884.	1.5	50
95	Respiratory Syncytial Virus Interferon Antagonist NS1 Protein Suppresses and Skews the Human T Lymphocyte Response. PLoS Pathogens, 2011, 7, e1001336.	2.1	98
96	Delivery of Cytokines by Recombinant Virus in Early Life Alters the Immune Response to Adult Lung Infection. Journal of Virology, 2010, 84, 5294-5302.	1.5	28
97	Newcastle Disease Virus-Vectored Vaccines Expressing the Hemagglutinin or Neuraminidase Protein of H5N1 Highly Pathogenic Avian Influenza Virus Protect against Virus Challenge in Monkeys. Journal of Virology, 2010, 84, 1489-1503.	1.5	86
98	Interleukin 18 Coexpression during Respiratory Syncytial Virus Infection Results in Enhanced Disease Mediated by Natural Killer Cells. Journal of Virology, 2010, 84, 4073-4082.	1.5	50
99	Respiratory tract immunization of non-human primates with a Newcastle disease virus-vectored vaccine candidate against Ebola virus elicits a neutralizing antibody response. Vaccine, 2010, 29, 17-25.	1.7	80
100	Filovirus vaccines: what challenges are left?. Expert Review of Vaccines, 2010, 9, 5-8.	2.0	4
101	Effects of Human Respiratory Syncytial Virus, Metapneumovirus, Parainfluenza Virus 3 and Influenza Virus on CD4+ T Cell Activation by Dendritic Cells. PLoS ONE, 2010, 5, e15017.	1.1	34
102	Chimeric human parainfluenza virus bearing the Ebola virus glycoprotein as the sole surface protein is immunogenic and highly protective against Ebola virus challenge. Virology, 2009, 383, 348-361.	1.1	59
103	Infection and maturation of monocyte-derived human dendritic cells by human respiratory syncytial virus, human metapneumovirus, and human parainfluenza virus type 3. Virology, 2009, 385, 169-182.	1.1	58
104	A paramyxovirus-vectored intranasal vaccine against Ebola virus is immunogenic in vector-immune animals. Virology, 2008, 377, 255-264.	1.1	34
105	Nonstructural Proteins 1 and 2 of Respiratory Syncytial Virus Suppress Maturation of Human Dendritic Cells. Journal of Virology, 2008, 82, 8780-8796.	1.5	100
106	What Are the Risks—Hypothetical and Observed—of Recombination Involving Live Vaccines and Vaccine Vectors Based on Nonsegmented Negative-Strain RNA Viruses?. Journal of Virology, 2008, 82, 9805-9806.	1.5	20
107	The Secreted Form of Respiratory Syncytial Virus G Glycoprotein Helps the Virus Evade Antibody-Mediated Restriction of Replication by Acting as an Antigen Decoy and through Effects on Fc Receptor-Bearing Leukocytes. Journal of Virology, 2008, 82, 12191-12204.	1.5	143
108	Newcastle disease virus as a vaccine vector for humans. Current Opinion in Molecular Therapeutics, 2008, 10, 46-55.	2.8	50

#	Article	IF	CITATIONS
109	Advances in the development of vaccines against Marburg and Ebola viruses. Future Virology, 2007, 2, 537-541.	0.9	1
110	Successful Topical Respiratory Tract Immunization of Primates against Ebola Virus. Journal of Virology, 2007, 81, 6379-6388.	1.5	142
111	Newcastle disease virus, a host range-restricted virus, as a vaccine vector for intranasal immunization against emerging pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9788-9793.	3.3	126
112	Virally Delivered Cytokines Alter the Immune Response to Future Lung Infections. Journal of Virology, 2007, 81, 13105-13111.	1.5	28
113	Immunization of Primates with a Newcastle Disease Virus-Vectored Vaccine via the Respiratory Tract Induces a High Titer of Serum Neutralizing Antibodies against Highly Pathogenic Avian Influenza Virus. Journal of Virology, 2007, 81, 11560-11568.	1.5	92
114	The Cysteine-Rich Region and Secreted Form of the Attachment G Glycoprotein of Respiratory Syncytial Virus Enhance the Cytotoxic T-Lymphocyte Response despite Lacking Major Histocompatibility Complex Class I-Restricted Epitopes. Journal of Virology, 2006, 80, 5854-5861.	1.5	30
115	A Single Intranasal Inoculation with a Paramyxovirus-Vectored Vaccine Protects Guinea Pigs against a Lethal-Dose Ebola Virus Challenge. Journal of Virology, 2006, 80, 2267-2279.	1.5	90
116	The NS2 Protein of Human Respiratory Syncytial Virus Suppresses the Cytotoxic T-Cell Response as a Consequence of Suppressing the Type I Interferon Response. Journal of Virology, 2006, 80, 5958-5967.	1.5	39
117	Nonsegmented Negative-Strand Viruses as Vaccine Vectors. Journal of Virology, 2006, 80, 10293-10306.	1.5	98
118	Recombinant Newcastle Disease Virus Expressing a Foreign Viral Antigen Is Attenuated and Highly Immunogenic in Primates. Journal of Virology, 2005, 79, 13275-13284.	1.5	107
119	Infection of Ciliated Cells by Human Parainfluenza Virus Type 3 in an In Vitro Model of Human Airway Epithelium. Journal of Virology, 2005, 79, 1113-1124.	1.5	259
120	Expression of Interleukin-4 by Recombinant Respiratory Syncytial Virus Is Associated with Accelerated Inflammation and a Nonfunctional Cytotoxic T-Lymphocyte Response following Primary Infection but Not following Challenge with Wild-Type Virus. Journal of Virology, 2005, 79, 9515-9526.	1.5	26
121	Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9804-9809.	3.3	372
122	Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6641-6646.	3.3	390
123	Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet, The, 2004, 363, 2122-2127.	6.3	252
124	Respiratory Syncytial Virus Infection Sensitizes Cells to Apoptosis Mediated by Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand. Journal of Virology, 2003, 77, 9156-9172.	1.5	121
125	Expression of immunomodulating molecules by recombinant viruses: can the immunogenicity of live virus vaccines be improved?. Expert Review of Vaccines, 2002, 1, 233-245.	2.0	9
126	More antibody with less antigen: Can immunogenicity of attenuated live virus vaccines be improved?. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16987-16991.	3.3	17

#	Article	IF	CITATIONS
127	Granulocyte-Macrophage Colony-Stimulating Factor Expressed by Recombinant Respiratory Syncytial Virus Attenuates Viral Replication and Increases the Level of Pulmonary Antigen-Presenting Cells. Journal of Virology, 2001, 75, 12128-12140.	1.5	74
128	Effect of Coexpression of Interleukin-2 by Recombinant Respiratory Syncytial Virus on Virus Replication, Immunogenicity, and Production of Other Cytokines. Journal of Virology, 2000, 74, 7151-7157.	1.5	27
129	Respiratory Syncytial Virus Can Tolerate an Intergenic Sequence of at Least 160 Nucleotides with Little Effect on Transcription or Replication In Vitro and In Vivo. Journal of Virology, 2000, 74, 11017-11026.	1.5	25
130	Rational Design of Live-Attenuated Recombinant Vaccine Virus for Human Respiratory Syncytial Virus by Reverse Genetics. Advances in Virus Research, 1999, 54, 423-451.	0.9	78
131	Characteristics of Filoviridae: Marburg and Ebola Viruses. Die Naturwissenschaften, 1999, 86, 8-17.	0.6	75
132	Recombinant Respiratory Syncytial Virus Bearing a Deletion of either the NS2 or SH Gene Is Attenuated in Chimpanzees. Journal of Virology, 1999, 73, 3438-3442.	1.5	206