Jiating Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2558402/publications.pdf Version: 2024-02-01

Ιματινίς Ζηλο

#	Article	IF	CITATIONS
1	Phytoavailability and transfer of mercury in soil-pepper system: Influencing factors, fate, and predictive approach for effective management of metal-impacted spiked soils. Environmental Research, 2022, 207, 112190.	3.7	7
2	Bioavailability and methylation of bulk mercury sulfide in paddy soils: New insights into mercury risks in rice paddies. Journal of Hazardous Materials, 2022, 424, 127394.	6.5	9
3	Detection and remediation of mercury contaminated environment by nanotechnology: Progress and challenges. Environmental Pollution, 2022, 293, 118557.	3.7	17
4	Mobilization and methylation of mercury with sulfur addition in paddy soil: Implications for integrated water-sulfur management in controlling Hg accumulation in rice. Journal of Hazardous Materials, 2022, 430, 128447.	6.5	15
5	Assessment of the Bioavailability of Mercury Sulfides in Paddy Soils Using Sodium Thiosulfate ExtractionÂ-ÂResults from Microcosm Experiments. Bulletin of Environmental Contamination and Toxicology, 2022, , .	1.3	0
6	Mercury Reduction, Uptake, and Species Transformation by Freshwater Alga <i>Chlorella vulgaris</i> under Sunlit and Dark Conditions. Environmental Science & Technology, 2022, 56, 4961-4969.	4.6	17
7	Roles of plant-associated microorganisms in regulating the fate of Hg in croplands: A perspective on potential pathways in maintaining sustainable agriculture. Science of the Total Environment, 2022, 834, 155204.	3.9	11
8	Non-targeted metallomics through synchrotron radiation X-ray fluorescence with machine learning for cancer screening using blood samples. Talanta, 2022, 245, 123486.	2.9	6
9	Size characterization of nanomaterials in environmental and biological matrices through non-electron microscopic techniques. Science of the Total Environment, 2022, 835, 155399.	3.9	3
10	Nanosafety evaluation through feces: A comparison between selenium nanoparticles and selenite in rats. Nano Today, 2021, 36, 101010.	6.2	25
11	Using nano-selenium to combat Coronavirus Disease 2019 (COVID-19)?. Nano Today, 2021, 36, 101037.	6.2	57
12	Temporal trends of urinary mercury in Chinese people from 1970s to 2010s: A review. Ecotoxicology and Environmental Safety, 2021, 208, 111460.	2.9	9
13	Using nanoselenium to combat Minamata disease in rats: the regulation of gut microbes. Environmental Science: Nano, 2021, 8, 1437-1445.	2.2	2
14	Comparative nanometallomics as a new tool for nanosafety evaluation. Metallomics, 2021, 13, .	1.0	8
15	Towards screening the neurotoxicity of chemicals through feces after exposure to methylmercury or inorganic mercury in rats: A combined study using gut microbiome, metabolomics and metallomics. Journal of Hazardous Materials, 2021, 409, 124923.	6.5	30
16	Pollution characteristics and ecological risks associated with heavy metals in the Fuyang river system in North China. Environmental Pollution, 2021, 281, 116994.	3.7	31
17	Speciation, transportation, and pathways of cadmium in soil-rice systems: A review on the environmental implications and remediation approaches for food safety. Environment International, 2021, 156, 106749.	4.8	116
18	Understanding the hepatoxicity of inorganic mercury through guts: Perturbance to gut microbiota, alteration of gut-liver axis related metabolites and damage to gut integrity. Ecotoxicology and Environmental Safety, 2021, 225, 112791.	2.9	14

#	Article	IF	CITATIONS
19	MALDI–TOF-MS and XAS analysis of complexes formed by metallothionein with mercury and/or selenium. BioMetals, 2021, 34, 1353-1363.	1.8	3
20	Comparative study of the effects of different chelating ligands on the absorption and transport of mercury in maize (Zea mays L.). Ecotoxicology and Environmental Safety, 2020, 188, 109897.	2.9	5
21	Acute oral methylmercury exposure perturbs the gut microbiome and alters gut-brain axis related metabolites in rats. Ecotoxicology and Environmental Safety, 2020, 190, 110130.	2.9	51
22	Synchrotron-based techniques for studying the environmental health effects of heavy metals: Current status and future perspectives. TrAC - Trends in Analytical Chemistry, 2020, 122, 115721.	5.8	32
23	A comparative study on the accumulation, translocation and transformation of selenite, selenate, and SeNPs in a hydroponic-plant system. Ecotoxicology and Environmental Safety, 2020, 189, 109955.	2.9	70
24	Silica nanoparticles alleviate mercury toxicity <i>via</i> immobilization and inactivation of Hg(<scp>ii</scp>) in soybean (<i>Glycine max</i>). Environmental Science: Nano, 2020, 7, 1807-1817.	2.2	48
25	Immobilization of mercury by nano-elemental selenium and the underlying mechanisms in hydroponic-cultured garlic plant. Environmental Science: Nano, 2020, 7, 1115-1125.	2.2	28
26	Fast Quantification and Speciation of Selenium in Dietary Supplements through Handheld XRF and Synchrotron Radiation XAS. Atomic Spectroscopy, 2020, 41, 127-130.	0.4	9
27	Stepwise Reduction Approach Reveals Mercury Competitive Binding and Exchange Reactions within Natural Organic Matter and Mixed Organic Ligands. Environmental Science & Technology, 2019, 53, 10685-10694.	4.6	35
28	Rapid Hydrolysis of Penicillin Antibiotics Mediated by Adsorbed Zinc on Goethite Surfaces. Environmental Science & Technology, 2019, 53, 10705-10713.	4.6	26
29	Selenium decreases methylmercury and increases nutritional elements in rice growing in mercury-contaminated farmland. Ecotoxicology and Environmental Safety, 2019, 182, 109447.	2.9	28
30	Selenium modulated gut flora and promoted decomposition of methylmercury in methylmercury-poisoned rats. Ecotoxicology and Environmental Safety, 2019, 185, 109720.	2.9	33
31	Elemental sulfur amendment enhance methylmercury accumulation in rice (Oryza sativa L.) grown in Hg mining polluted soil. Journal of Hazardous Materials, 2019, 379, 120701.	6.5	32
32	Botanic Metallomics of Mercury and Selenium: Current Understanding of Mercury-Selenium Antagonism in Plant with the Traditional and Advanced Technology. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 628-634.	1.3	17
33	Effects of Farming Activities on the Biogeochemistry of Mercury in Rice–Paddy Soil Systems. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 635-642.	1.3	18
34	Increased Methylmercury Accumulation in Rice after Straw Amendment. Environmental Science & Technology, 2019, 53, 6144-6153.	4.6	45
35	Mobilization of mercury species under dynamic laboratory redox conditions in a contaminated floodplain soil as affected by biochar and sugar beet factory lime. Science of the Total Environment, 2019, 672, 604-617.	3.9	38
36	Human Biological Monitoring of Mercury Through Hair Samples in China. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 701-707.	1.3	11

#	Article	IF	CITATIONS
37	Nanoelemental selenium alleviated the mercury load and promoted the formation of high-molecular-weight mercury- and selenium-containing proteins in serum samples from methylmercury-poisoned rats. Ecotoxicology and Environmental Safety, 2019, 169, 128-133.	2.9	10
38	Understanding Enhanced Microbial MeHg Production in Mining-Contaminated Paddy Soils under Sulfate Amendment: Changes in Hg Mobility or Microbial Methylators?. Environmental Science & Technology, 2019, 53, 1844-1852.	4.6	58
39	Intestinal Methylation and Demethylation of Mercury. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 597-604.	1.3	42
40	Translocation and transformation of selenium in hyperaccumulator plant Cardamine enshiensis from Enshi, Hubei, China. Plant and Soil, 2018, 425, 577-588.	1.8	31
41	Selenoprotein P as the major transporter for mercury in serum from methylmercury-poisoned rats. Journal of Trace Elements in Medicine and Biology, 2018, 50, 589-595.	1.5	28
42	Evidence for molecular antagonistic mechanism between mercury and selenium in rice (Oryza sativa) Tj ETQq0 0	0 rgBT /O [.] 1.5	verlock 10 Tf 20
	Thiosulfate amendment reduces mercury accumulation in rice (Orvza sativa L.). Plant and Soil, 2018,		
43	430, 413-422.	1.8	27
44	Advanced Nuclear and Related Techniques for Metallomics and Nanometallomics. Advances in Experimental Medicine and Biology, 2018, 1055, 213-243.	0.8	4
45	Influence of sulfur on the accumulation of mercury in rice plant (Oryza sativa L.) growing in mercury contaminated soils. Chemosphere, 2017, 182, 293-300.	4.2	68
46	Measurement of protein size in concentrated solutions by small angle Xâ€ray scattering. Protein Science, 2016, 25, 1385-1389.	3.1	4
47	Elevated mercury bound to serum proteins in methylmercury poisoned rats after selenium treatment. BioMetals, 2016, 29, 893-903.	1.8	13
48	Mechanistic understanding of MeHg-Se antagonism in soil-rice systems: the key role of antagonism in soil. Scientific Reports, 2016, 6, 19477.	1.6	42
49	Simple, Selective and Sensitive Determination of CH ₃ Hg ⁺ Using Gold Nanocluster. Journal of Nanoscience and Nanotechnology, 2016, 16, 772-776.	0.9	5
50	Comparative metalloproteomic approaches for the investigation proteins involved in the toxicity of inorganic and organic forms of mercury in rice (Oryza sativa L.) roots. Metallomics, 2016, 8, 663-671.	1.0	30
51	Demethylation of methylmercury in growing rice plants: An evidence of self-detoxification. Environmental Pollution, 2016, 210, 113-120.	3.7	43
52	The influence of iron plaque on the absorption, translocation and transformation of mercury in rice (Oryza sativa L.) seedlings exposed to different mercury species. Plant and Soil, 2016, 398, 87-97.	1.8	73
53	Phytotoxicity, Translocation, and Biotransformation of NaYF ₄ Upconversion Nanoparticles in a Soybean Plant. Small, 2015, 11, 4774-4784.	5.2	49
54	Identification and quantification of seleno-proteins by 2-DE-SR-XRF in selenium-enriched yeasts. Journal of Analytical Atomic Spectrometry, 2015, 30, 1408-1413.	1.6	15

#	Article	IF	CITATIONS
55	The concentration of selenium matters: a field study on mercury accumulation in rice by selenite treatment in qingzhen, Guizhou, China. Plant and Soil, 2015, 391, 195-205.	1.8	61
56	Synchrotron radiation techniques for nanotoxicology. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1531-1549.	1.7	29
57	Nanomaterial-based approaches for the detection and speciation of mercury. Analyst, The, 2015, 140, 7841-7853.	1.7	31
58	Accumulation and transformation of nanomaterials in ecological model organisms investigated by using synchrotron radiation techniques. Journal of Analytical Atomic Spectrometry, 2015, 30, 2038-2047.	1.6	4
59	Wide-range particle characterization and elemental concentration in Beijing aerosol during the 2013 Spring Festival. Environmental Pollution, 2014, 192, 204-211.	3.7	48
60	Nanometallomics: an emerging field studying the biological effects of metal-related nanomaterials. Metallomics, 2014, 6, 220.	1.0	37
61	Selenium modulates mercury uptake and distribution in rice (Oryza sativa L.), in correlation with mercury species and exposure level. Metallomics, 2014, 6, 1951-1957.	1.0	64
62	Synthesis and application of magnesium amorphous calcium carbonate for removal of high concentration of phosphate. Chemical Engineering Journal, 2014, 251, 102-110.	6.6	41
63	Cellular response of E. coli upon Hg2+ exposure – a case study of advanced nuclear analytical approach to metalloproteomics. Metallomics, 2013, 5, 913.	1.0	17
64	Selenium inhibits the phytotoxicity of mercury in garlic (Allium sativum). Environmental Research, 2013, 125, 75-81.	3.7	73
65	Mercury modulates selenium activity via altering its accumulation and speciation in garlic (Allium) Tj ETQq1 10.	784314 rg 1.0	BT /Overlock
66	Full quantification of selenium species by RP and AF-ICP-qMS with on-line isotope dilution in serum samples from mercury-exposed people supplemented with selenium-enriched yeast. Journal of Analytical Atomic Spectrometry, 2011, 26, 224-229.	1.6	15
67	Multielemental contents of foodstuffs from the Wanshan (China) mercury mining area and the potential health risks. Applied Geochemistry, 2011, 26, 182-187.	1.4	25
68	Mercury in human hair and blood samples from people living in Wanshan mercury mine area, Guizhou, China: An XAS study. Journal of Inorganic Biochemistry, 2008, 102, 500-506.	1.5	20
69	Mapping technique for biodistribution of elements in a model organism, Caenorhabditis elegans, after exposure to copper nanoparticles with microbeam synchrotron radiation X-ray fluorescence. Journal of Analytical Atomic Spectrometry, 2008, 23, 1121.	1.6	75
70	Metallomics, elementomics, and analytical techniques. Pure and Applied Chemistry, 2008, 80, 2577-2594.	0.9	33
71	Advanced nuclear analytical techniques for metalloproteomics. Journal of Analytical Atomic Spectrometry, 2007, 22, 856.	1.6	55
72	Simultaneous speciation of selenium and mercury in human urine samples from long-term mercury-exposed populations with supplementation of selenium-enriched yeast by HPLC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2007, 22, 925.	1.6	50

#	Article	IF	CITATIONS
73	Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS. Journal of Analytical Atomic Spectrometry, 2006, 21, 94-96.	1.6	322
74	Preliminary study of oxidative stress in human hepatocellular carcinoma and adjacent normal liver tissues. Chinese Journal of Clinical Oncology, 2006, 3, 11-14.	0.0	2
75	XAFS study on interactions of metallothionein, mercuric chloride and/or sodium selenite. Diqiu Huaxue, 2006, 25, 124-124.	0.5	0
76	Detection of metalloproteins in human liver cytosol by synchrotron radiation X-ray fluorescence combined with gel filtration chromatography and isoelectric focusing separation. Analyst, The, 2002, 127, 1700-1704.	1.7	33