Jiating Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2558402/publications.pdf

Version: 2024-02-01

		159525	214721
76	2,532	30	47
papers	citations	h-index	g-index
78	78	78	2869
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS. Journal of Analytical Atomic Spectrometry, 2006, 21, 94-96.	1.6	322
2	Speciation, transportation, and pathways of cadmium in soil-rice systems: A review on the environmental implications and remediation approaches for food safety. Environment International, 2021, 156, 106749.	4.8	116
3	Mapping technique for biodistribution of elements in a model organism, Caenorhabditis elegans, after exposure to copper nanoparticles with microbeam synchrotron radiation X-ray fluorescence. Journal of Analytical Atomic Spectrometry, 2008, 23, 1121.	1.6	7 5
4	Selenium inhibits the phytotoxicity of mercury in garlic (Allium sativum). Environmental Research, 2013, 125, 75-81.	3.7	73
5	The influence of iron plaque on the absorption, translocation and transformation of mercury in rice (Oryza sativa L.) seedlings exposed to different mercury species. Plant and Soil, 2016, 398, 87-97.	1.8	73
6	A comparative study on the accumulation, translocation and transformation of selenite, selenate, and SeNPs in a hydroponic-plant system. Ecotoxicology and Environmental Safety, 2020, 189, 109955.	2.9	70
7	Influence of sulfur on the accumulation of mercury in rice plant (Oryza sativa L.) growing in mercury contaminated soils. Chemosphere, 2017, 182, 293-300.	4.2	68
8	Selenium modulates mercury uptake and distribution in rice (Oryza sativa L.), in correlation with mercury species and exposure level. Metallomics, 2014, 6, 1951-1957.	1.0	64
9	The concentration of selenium matters: a field study on mercury accumulation in rice by selenite treatment in qingzhen, Guizhou, China. Plant and Soil, 2015, 391, 195-205.	1.8	61
10	Understanding Enhanced Microbial MeHg Production in Mining-Contaminated Paddy Soils under Sulfate Amendment: Changes in Hg Mobility or Microbial Methylators?. Environmental Science & Emp; Technology, 2019, 53, 1844-1852.	4.6	58
11	Using nano-selenium to combat Coronavirus Disease 2019 (COVID-19)?. Nano Today, 2021, 36, 101037.	6.2	57
12	Advanced nuclear analytical techniques for metalloproteomics. Journal of Analytical Atomic Spectrometry, 2007, 22, 856.	1.6	55
13	Acute oral methylmercury exposure perturbs the gut microbiome and alters gut-brain axis related metabolites in rats. Ecotoxicology and Environmental Safety, 2020, 190, 110130.	2.9	51
14	Simultaneous speciation of selenium and mercury in human urine samples from long-term mercury-exposed populations with supplementation of selenium-enriched yeast by HPLC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2007, 22, 925.	1.6	50
15	Phytotoxicity, Translocation, and Biotransformation of NaYF ₄ Upconversion Nanoparticles in a Soybean Plant. Small, 2015, 11, 4774-4784.	5. 2	49
16	Wide-range particle characterization and elemental concentration in Beijing aerosol during the 2013 Spring Festival. Environmental Pollution, 2014, 192, 204-211.	3.7	48
17	Silica nanoparticles alleviate mercury toxicity <i>via</i> immobilization and inactivation of Hg(<scp>ii</scp>) in soybean (<i>Glycine max</i>). Environmental Science: Nano, 2020, 7, 1807-1817.	2.2	48
18	Increased Methylmercury Accumulation in Rice after Straw Amendment. Environmental Science & Emp; Technology, 2019, 53, 6144-6153.	4.6	45

#	Article	IF	CITATIONS
19	Demethylation of methylmercury in growing rice plants: An evidence of self-detoxification. Environmental Pollution, 2016, 210, 113-120.	3.7	43
20	Mechanistic understanding of MeHg-Se antagonism in soil-rice systems: the key role of antagonism in soil. Scientific Reports, 2016, 6, 19477.	1.6	42
21	Intestinal Methylation and Demethylation of Mercury. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 597-604.	1.3	42
22	Synthesis and application of magnesium amorphous calcium carbonate for removal of high concentration of phosphate. Chemical Engineering Journal, 2014, 251, 102-110.	6.6	41
23	Mobilization of mercury species under dynamic laboratory redox conditions in a contaminated floodplain soil as affected by biochar and sugar beet factory lime. Science of the Total Environment, 2019, 672, 604-617.	3.9	38
24	Nanometallomics: an emerging field studying the biological effects of metal-related nanomaterials. Metallomics, 2014, 6, 220.	1.0	37
25	Stepwise Reduction Approach Reveals Mercury Competitive Binding and Exchange Reactions within Natural Organic Matter and Mixed Organic Ligands. Environmental Science & Exchange Reactions within 10685-10694.	4.6	35
26	Detection of metalloproteins in human liver cytosol by synchrotron radiation X-ray fluorescence combined with gel filtration chromatography and isoelectric focusing separation. Analyst, The, 2002, 127, 1700-1704.	1.7	33
27	Metallomics, elementomics, and analytical techniques. Pure and Applied Chemistry, 2008, 80, 2577-2594.	0.9	33
28	Selenium modulated gut flora and promoted decomposition of methylmercury in methylmercury-poisoned rats. Ecotoxicology and Environmental Safety, 2019, 185, 109720.	2.9	33
29	Elemental sulfur amendment enhance methylmercury accumulation in rice (Oryza sativa L.) grown in Hg mining polluted soil. Journal of Hazardous Materials, 2019, 379, 120701.	6.5	32
30	Synchrotron-based techniques for studying the environmental health effects of heavy metals: Current status and future perspectives. TrAC - Trends in Analytical Chemistry, 2020, 122, 115721.	5.8	32
31	Nanomaterial-based approaches for the detection and speciation of mercury. Analyst, The, 2015, 140, 7841-7853.	1.7	31
32	Translocation and transformation of selenium in hyperaccumulator plant Cardamine enshiensis from Enshi, Hubei, China. Plant and Soil, 2018, 425, 577-588.	1.8	31
33	Pollution characteristics and ecological risks associated with heavy metals in the Fuyang river system in North China. Environmental Pollution, 2021, 281, 116994.	3.7	31
34	Comparative metalloproteomic approaches for the investigation proteins involved in the toxicity of inorganic and organic forms of mercury in rice (Oryza sativa L.) roots. Metallomics, 2016, 8, 663-671.	1.0	30
35	Towards screening the neurotoxicity of chemicals through feces after exposure to methylmercury or inorganic mercury in rats: A combined study using gut microbiome, metabolomics and metallomics. Journal of Hazardous Materials, 2021, 409, 124923.	6.5	30
36	Synchrotron radiation techniques for nanotoxicology. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1531-1549.	1.7	29

#	Article	IF	Citations
37	Mercury modulates selenium activity via altering its accumulation and speciation in garlic (Allium) Tj ETQq1	1 0.784314 rg	gBT_1Qverlock
38	Selenoprotein P as the major transporter for mercury in serum from methylmercury-poisoned rats. Journal of Trace Elements in Medicine and Biology, 2018, 50, 589-595.	1.5	28
39	Selenium decreases methylmercury and increases nutritional elements in rice growing in mercury-contaminated farmland. Ecotoxicology and Environmental Safety, 2019, 182, 109447.	2.9	28
40	Immobilization of mercury by nano-elemental selenium and the underlying mechanisms in hydroponic-cultured garlic plant. Environmental Science: Nano, 2020, 7, 1115-1125.	2.2	28
41	Thiosulfate amendment reduces mercury accumulation in rice (Oryza sativa L.). Plant and Soil, 2018, 430, 413-422.	1.8	27
42	Rapid Hydrolysis of Penicillin Antibiotics Mediated by Adsorbed Zinc on Goethite Surfaces. Environmental Science & Environment	4.6	26
43	Multielemental contents of foodstuffs from the Wanshan (China) mercury mining area and the potential health risks. Applied Geochemistry, 2011, 26, 182-187.	1.4	25
44	Nanosafety evaluation through feces: A comparison between selenium nanoparticles and selenite in rats. Nano Today, 2021, 36, 101010.	6.2	25
45	Mercury in human hair and blood samples from people living in Wanshan mercury mine area, Guizhou, China: An XAS study. Journal of Inorganic Biochemistry, 2008, 102, 500-506.	1.5	20
46	Evidence for molecular antagonistic mechanism between mercury and selenium in rice (Oryza sativa) Tj ETQo Elements in Medicine and Biology, 2018, 50, 435-440.	q0 0 0 rgBT /C 1.5	Overlock 10 Tf 20
47	Effects of Farming Activities on the Biogeochemistry of Mercury in Rice–Paddy Soil Systems. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 635-642.	1.3	18
48	Cellular response of E. coli upon Hg2+ exposure – a case study of advanced nuclear analytical approach to metalloproteomics. Metallomics, 2013, 5, 913.	1.0	17
49	Botanic Metallomics of Mercury and Selenium: Current Understanding of Mercury-Selenium Antagonism in Plant with the Traditional and Advanced Technology. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 628-634.	1.3	17
50	Detection and remediation of mercury contaminated environment by nanotechnology: Progress and challenges. Environmental Pollution, 2022, 293, 118557.	3.7	17
51	Mercury Reduction, Uptake, and Species Transformation by Freshwater Alga <i>Chlorella vulgaris</i> under Sunlit and Dark Conditions. Environmental Science & Environmental Scie	4.6	17
52	Full quantification of selenium species by RP and AF-ICP-qMS with on-line isotope dilution in serum samples from mercury-exposed people supplemented with selenium-enriched yeast. Journal of Analytical Atomic Spectrometry, 2011, 26, 224-229.	1.6	15
53	Identification and quantification of seleno-proteins by 2-DE-SR-XRF in selenium-enriched yeasts. Journal of Analytical Atomic Spectrometry, 2015, 30, 1408-1413.	1.6	15
54	Mobilization and methylation of mercury with sulfur addition in paddy soil: Implications for integrated water-sulfur management in controlling Hg accumulation in rice. Journal of Hazardous Materials, 2022, 430, 128447.	6.5	15

#	Article	IF	CITATIONS
55	Understanding the hepatoxicity of inorganic mercury through guts: Perturbance to gut microbiota, alteration of gut-liver axis related metabolites and damage to gut integrity. Ecotoxicology and Environmental Safety, 2021, 225, 112791.	2.9	14
56	Elevated mercury bound to serum proteins in methylmercury poisoned rats after selenium treatment. BioMetals, 2016, 29, 893-903.	1.8	13
57	Human Biological Monitoring of Mercury Through Hair Samples in China. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 701-707.	1.3	11
58	Roles of plant-associated microorganisms in regulating the fate of Hg in croplands: A perspective on potential pathways in maintaining sustainable agriculture. Science of the Total Environment, 2022, 834, 155204.	3.9	11
59	Nanoelemental selenium alleviated the mercury load and promoted the formation of high-molecular-weight mercury- and selenium-containing proteins in serum samples from methylmercury-poisoned rats. Ecotoxicology and Environmental Safety, 2019, 169, 128-133.	2.9	10
60	Temporal trends of urinary mercury in Chinese people from 1970s to 2010s: A review. Ecotoxicology and Environmental Safety, 2021, 208, 111460.	2.9	9
61	Fast Quantification and Speciation of Selenium in Dietary Supplements through Handheld XRF and Synchrotron Radiation XAS. Atomic Spectroscopy, 2020, 41, 127-130.	0.4	9
62	Bioavailability and methylation of bulk mercury sulfide in paddy soils: New insights into mercury risks in rice paddies. Journal of Hazardous Materials, 2022, 424, 127394.	6.5	9
63	Comparative nanometallomics as a new tool for nanosafety evaluation. Metallomics, 2021, 13, .	1.0	8
64	Phytoavailability and transfer of mercury in soil-pepper system: Influencing factors, fate, and predictive approach for effective management of metal-impacted spiked soils. Environmental Research, 2022, 207, 112190.	3.7	7
65	Non-targeted metallomics through synchrotron radiation X-ray fluorescence with machine learning for cancer screening using blood samples. Talanta, 2022, 245, 123486.	2.9	6
66	Simple, Selective and Sensitive Determination of CH ₃ Hg ⁺ Using Gold Nanocluster. Journal of Nanoscience and Nanotechnology, 2016, 16, 772-776.	0.9	5
67	Comparative study of the effects of different chelating ligands on the absorption and transport of mercury in maize (Zea mays L.). Ecotoxicology and Environmental Safety, 2020, 188, 109897.	2.9	5
68	Accumulation and transformation of nanomaterials in ecological model organisms investigated by using synchrotron radiation techniques. Journal of Analytical Atomic Spectrometry, 2015, 30, 2038-2047.	1.6	4
69	Measurement of protein size in concentrated solutions by small angle Xâ€ray scattering. Protein Science, 2016, 25, 1385-1389.	3.1	4
70	Advanced Nuclear and Related Techniques for Metallomics and Nanometallomics. Advances in Experimental Medicine and Biology, 2018, 1055, 213-243.	0.8	4
71	MALDI–TOF-MS and XAS analysis of complexes formed by metallothionein with mercury and/or selenium. BioMetals, 2021, 34, 1353-1363.	1.8	3
72	Size characterization of nanomaterials in environmental and biological matrices through non-electron microscopic techniques. Science of the Total Environment, 2022, 835, 155399.	3.9	3

#	Article	IF	CITATIONS
73	Preliminary study of oxidative stress in human hepatocellular carcinoma and adjacent normal liver tissues. Chinese Journal of Clinical Oncology, 2006, 3, 11-14.	0.0	2
74	Using nanoselenium to combat Minamata disease in rats: the regulation of gut microbes. Environmental Science: Nano, 2021, 8, 1437-1445.	2.2	2
75	XAFS study on interactions of metallothionein, mercuric chloride and/or sodium selenite. Diqiu Huaxue, 2006, 25, 124-124.	0.5	O
76	Assessment of the Bioavailability of Mercury Sulfides in Paddy Soils Using Sodium Thiosulfate ExtractionÂ-ÂResults from Microcosm Experiments. Bulletin of Environmental Contamination and Toxicology, 2022, , .	1.3	0