
Nicholas A Payne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2558062/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Application of Scanning Electrochemical Microscopy to Corrosion Research. Corrosion, 2017, 73, 759-780.	1.1	53
2	Measurement on isolated lithium iron phosphate particles reveals heterogeneity in material properties distribution. Journal of Power Sources, 2016, 325, 682-689.	7.8	37
3	Evaluating the Use of Edge Detection in Extracting Feature Size from Scanning Electrochemical Microscopy Images. Analytical Chemistry, 2019, 91, 3944-3950.	6.5	13
4	Corrosion Product Formation Monitored Using the Feedback Mode of Scanning Electrochemical Microscopy with Carbon Microelectrodes. Journal of the Electrochemical Society, 2015, 162, C677-C683.	2.9	12
5	Probing Passivating Porous Films by Scanning Electrochemical Microscopy. Journal of the Electrochemical Society, 2016, 163, H3066-H3071.	2.9	12
6	Identifying Nanoscale Pinhole Defects in Nitroaryl Layers with Scanning Electrochemical Cell Microscopy. ChemElectroChem, 2019, 6, 5439-5445.	3.4	12
7	Effect of Substrate Permeability on Scanning Ion Conductance Microscopy: Uncertainty in Tip–Substrate Separation and Determination of Ionic Conductivity. Analytical Chemistry, 2019, 91, 15718-15725.	6.5	12
8	Super-resolution Scanning Electrochemical Microscopy. Analytical Chemistry, 2020, 92, 3958-3963.	6.5	12
9	The Structural and Electrochemical Effects of N-Heterocyclic Carbene Monolayers on Magnesium. Journal of the Electrochemical Society, 2018, 165, G139-G145.	2.9	10
10	Redox-Triggered Disassembly of Nanosized Liposomes Containing Ferrocene-Appended Amphiphiles. Langmuir, 2019, 35, 5608-5616.	3.5	9
11	Computationally forecasting the effect of dibenzylammonium substituents on pseudorotaxane formation with dibenzo[24]crown-8. Tetrahedron Letters, 2015, 56, 5175-5179.	1.4	7
12	Charge Storage in Graphene Oxide: Impact of the Cation on Ion Permeability and Interfacial Capacitance. Analytical Chemistry, 2020, 92, 10300-10307.	6.5	7
13	Bromopyrido-24-crown-8: a versatile building block for the construction of interlocked molecules. Tetrahedron Letters, 2016, 57, 513-516.	1.4	4
14	Modular construction of pyrido[24]crown-8-based templates in the self-assembly of cross-linked [n]catenanes. Tetrahedron Letters, 2017, 58, 3226-3229.	1.4	2
15	Unfolding the Hidden Reactions in Galvanic Cells. Electrocatalysis, 2018, 9, 531-538.	3.0	2
16	Bottomâ€Up Characterization and Selfâ€Assembly of Electrogenerated Chemiluminescence Active Ruthenium Nanospheres. ChemElectroChem, 2019, 6, 3499-3506.	3.4	1
17	Portable and sustainable activated carbon-based device for electro-assisted water purification. Environmental Science: Water Research and Technology, 2021, 7, 622-629.	2.4	0