
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/255790/publications.pdf Version: 2024-02-01

Ιιιαν Εερράω

#	Article	IF	CITATIONS
1	Biochemistry and Genetics of Insect Resistance toBacillus thuringiensis. Annual Review of Entomology, 2002, 47, 501-533.	11.8	823
2	Bacterial Vegetative Insecticidal Proteins (Vip) from Entomopathogenic Bacteria. Microbiology and Molecular Biology Reviews, 2016, 80, 329-350.	6.6	233
3	Mechanisms of Resistance to Insecticidal Proteins from <i>Bacillus thuringiensis</i> . Annual Review of Entomology, 2021, 66, 121-140.	11.8	152
4	ABCC transporters mediate insect resistance to multiple Bt toxins revealed by bulk segregant analysis. BMC Biology, 2014, 12, 46.	3.8	144
5	Midgut microbiota and host immunocompetence underlie <i>Bacillus thuringiensis</i> killing mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9486-9491.	7.1	144
6	Interaction of <i>Bacillus thuringiensis</i> Cry1 and Vip3A Proteins with <i>Spodoptera frugiperda</i> Midgut Binding Sites. Applied and Environmental Microbiology, 2009, 75, 2236-2237.	3.1	131
7	Development and Characterization of Diamondback Moth Resistance to Transgenic Broccoli Expressing High Levels of Cry1C. Applied and Environmental Microbiology, 2000, 66, 3784-3789.	3.1	114
8	Shared Midgut Binding Sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa Proteins from Bacillus thuringiensis in Two Important Corn Pests, Ostrinia nubilalis and Spodoptera frugiperda. PLoS ONE, 2013, 8, e68164.	2.5	109
9	Field-evolved resistance to Bt toxins. Nature Biotechnology, 2008, 26, 1072-1074.	17.5	104
10	Lack of Detrimental Effects of Bacillus thuringiensis Cry Toxins on the Insect Predator Chrysoperla carnea : a Toxicological, Histopathological, and Biochemical Analysis. Applied and Environmental Microbiology, 2006, 72, 1595-1603.	3.1	100
11	Interaction of Bacillus thuringiensis Toxins with Larval Midgut Binding Sites of Helicoverpa armigera (Lepidoptera: Noctuidae). Applied and Environmental Microbiology, 2004, 70, 1378-1384.	3.1	89
12	Mechanism of Resistance to Bacillus thuringiensis Toxin Cry1Ac in a Greenhouse Population of the Cabbage Looper, Trichoplusia ni. Applied and Environmental Microbiology, 2007, 73, 1199-1207.	3.1	88
13	Specific Binding of <i>Bacillus thuringiensis</i> Cry2A Insecticidal Proteins to a Common Site in the Midgut of <i>Helicoverpa</i> Species. Applied and Environmental Microbiology, 2008, 74, 7654-7659.	3.1	86
14	Production and Characterization of <i>Bacillus thuringiensis</i> Cry1Ac-Resistant Cotton Bollworm <i>Helicoverpa zea</i> (Boddie). Applied and Environmental Microbiology, 2008, 74, 462-469.	3.1	80
15	Binding Site Alteration Is Responsible for Field-Isolated Resistance to Bacillus thuringiensis Cry2A Insecticidal Proteins in Two Helicoverpa Species. PLoS ONE, 2010, 5, e9975.	2.5	79
16	<i>In Vivo</i> and <i>In Vitro</i> Binding of Vip3Aa to Spodoptera frugiperda Midgut and Characterization of Binding Sites by ¹²⁵ I Radiolabeling. Applied and Environmental Microbiology, 2014, 80, 6258-6265.	3.1	78
17	Binding of Bacillus thuringiensis toxins in resistant and susceptible strains of pink bollworm (Pectinophora gossypiella). Insect Biochemistry and Molecular Biology, 2003, 33, 929-935.	2.7	74
18	Increase in midgut microbiota load induces an apparent immune priming and increases tolerance to <i>Bacillus thuringiensis</i> . Environmental Microbiology, 2010, 12, 2730-2737.	3.8	74

#	Article	IF	CITATIONS
19	Susceptibility of Spodoptera exigua to 9 toxins from Bacillus thuringiensis. Journal of Invertebrate Pathology, 2008, 97, 245-250.	3.2	70
20	The transcriptome of Spodoptera exigua larvae exposed to different types of microbes. Insect Biochemistry and Molecular Biology, 2012, 42, 557-570.	2.7	70
21	Susceptibility of Spodoptera frugiperda and S. exigua to Bacillus thuringiensis Vip3Aa insecticidal protein. Journal of Invertebrate Pathology, 2012, 110, 334-339.	3.2	69
22	A screening of five Bacillus thuringiensis Vip3A proteins for their activity against lepidopteran pests. Journal of Invertebrate Pathology, 2014, 117, 51-55.	3.2	69
23	Pigment patterns in mutants affecting the biosynthesis of pteridines and xanthommatin in Drosophila melanogaster. Biochemical Genetics, 1986, 24, 545-569.	1.7	68
24	Binding of Insecticidal Crystal Proteins of <i>Bacillus thuringiensis</i> to the Midgut Brush Border of the Cabbage Looper, <i>Trichoplusia ni</i> (Hübner) (Lepidoptera: Noctuidae), and Selection for Resistance to One of the Crystal Proteins. Applied and Environmental Microbiology, 1994, 60, 3840-3846.	3.1	67
25	Insecticidal Genetically Modified Crops and Insect Resistance Management (IRM). , 2008, , 41-85.		66
26	Constitutive Activation of the Midgut Response to Bacillus thuringiensis in Bt-Resistant Spodoptera exigua. PLoS ONE, 2010, 5, e12795.	2.5	63
27	Environmental Distribution and Diversity of Bacillus thuringiensis in Spain. Systematic and Applied Microbiology, 1998, 21, 97-106.	2.8	62
28	Mutations in the Bacillus thuringiensis Cry1Ca toxin demonstrate the role of domains II and III in specificity towards Spodoptera exigua larvae. Biochemical Journal, 2004, 384, 507-513.	3.7	61
29	Screening and identification of <i>vip</i> genes in <i>Bacillus thuringiensis</i> strains. Journal of Applied Microbiology, 2009, 107, 219-225.	3.1	60
30	Histopathological Effects and Growth Reduction in a Susceptible and a Resistant Strain of Heliothis virescens (Lepidoptera: Noctuidae) Caused by Sublethal Doses of Pure Cry1A Crystal Proteins from Bacillus thuringiensis. Biocontrol Science and Technology, 1999, 9, 239-246.	1.3	57
31	Bacillus thuringiensisCrystal Proteins CRY1Ab and CRY1Fa Share a High Affinity Binding Site inPlutella xylostella(L.). Biochemical and Biophysical Research Communications, 1996, 224, 779-783.	2.1	55
32	Characterization of the resistance to Vip3Aa in Helicoverpa armigera from Australia and the role of midgut processing and receptor binding. Scientific Reports, 2016, 6, 24311.	3.3	52
33	Insecticidal activity of Vip3Aa, Vip3Ad, Vip3Ae, and Vip3Af from Bacillus thuringiensis against lepidopteran corn pests. Journal of Invertebrate Pathology, 2013, 113, 78-81.	3.2	51
34	Changes in gene expression and apoptotic response in Spodoptera exigua larvae exposed to sublethal concentrations of Vip3 insecticidal proteins. Scientific Reports, 2017, 7, 16245.	3.3	51
35	Insights into the Structure of the Vip3Aa Insecticidal Protein by Protease Digestion Analysis. Toxins, 2017, 9, 131.	3.4	51
36	Mode of inheritance and stability of resistance toBacillus thuringiensis varkurstaki in a diamondback moth (Plutella xylostella) population from Malaysia. Pest Management Science, 2000, 56, 743-748.	3.4	48

#	Article	IF	CITATIONS
37	Downregulation of a Chitin Deacetylase-Like Protein in Response to Baculovirus Infection and Its Application for Improving Baculovirus Infectivity. Journal of Virology, 2010, 84, 2547-2555.	3.4	47
38	Distribution of cryl, cryll and cryV Genes within Bacillus thuringiensis Isolates from Spain. Systematic and Applied Microbiology, 1999, 22, 179-185.	2.8	46
39	Proteolytic processing of Bacillus thuringiensis Vip3A proteins by two Spodoptera species. Journal of Insect Physiology, 2014, 67, 76-84.	2.0	46
40	Association of Cry1Ac Toxin Resistance in Helicoverpa zea (Boddie) with Increased Alkaline Phosphatase Levels in the Midgut Lumen. Applied and Environmental Microbiology, 2012, 78, 5690-5698.	3.1	45
41	Molecular and Insecticidal Characterization of a Cry1I Protein Toxic to Insects of the Families Noctuidae, Tortricidae, Plutellidae, and Chrysomelidae. Applied and Environmental Microbiology, 2006, 72, 4796-4804.	3.1	44
42	Molecular architecture and activation of the insecticidal protein Vip3Aa from Bacillus thuringiensis. Nature Communications, 2020, 11, 3974.	12.8	44
43	Toxicity and Mode of Action of Bacillus thuringiensis Cry Proteins in the Mediterranean Corn Borer, Sesamia nonagrioides (Lefebvre). Applied and Environmental Microbiology, 2006, 72, 2594-2600.	3.1	42
44	Common Receptor for Bacillus thuringiensis Toxins Cry1Ac, Cry1Fa, and Cry1Ja in Helicoverpa armigera , Helicoverpa zea , and Spodoptera exigua. Applied and Environmental Microbiology, 2005, 71, 5627-5629.	3.1	41
45	Synergism and Antagonism between Bacillus thuringiensis Vip3A and Cry1 Proteins in Heliothis virescens, Diatraea saccharalis and Spodoptera frugiperda. PLoS ONE, 2014, 9, e107196.	2.5	41
46	Response Mechanisms of Invertebrates to <i>Bacillus thuringiensis</i> and Its Pesticidal Proteins. Microbiology and Molecular Biology Reviews, 2021, 85, .	6.6	40
47	Cross-resistance and mechanism of resistance to Cry1Ab toxin from Bacillus thuringiensis in a field-derived strain of European corn borer, Ostrinia nubilalis. Journal of Invertebrate Pathology, 2011, 107, 185-192.	3.2	39
48	Lack of crossâ€resistance to other <i>Bacillus thuringiensis</i> crystal proteins in a population of <i>Plutella xylostella</i> highly resistant to cryia(b). Biocontrol Science and Technology, 1994, 4, 437-443.	1.3	37
49	Bacillus thuringiensis Vip3Aa Toxin Resistance in Heliothis virescens (Lepidoptera: Noctuidae). Applied and Environmental Microbiology, 2017, 83, .	3.1	37
50	Isolation and toxicity of Bacillus thuringiensis from potato-growing areas in Bolivia. Journal of Invertebrate Pathology, 2005, 88, 8-16.	3.2	35
51	Susceptibility, mechanisms of response and resistance to Bacillus thuringiensis toxins in Spodoptera spp Current Opinion in Insect Science, 2016, 15, 89-96.	4.4	35
52	Occurrence of a common binding site in Mamestra brassicae, Phthorimaea operculella, and Spodoptera exigua for the insecticidal crystal proteins CryIA from Bacillus thuringiensis. Insect Biochemistry and Molecular Biology, 1997, 27, 651-656.	2.7	33
53	Vip3C, a Novel Class of Vegetative Insecticidal Proteins from Bacillus thuringiensis. Applied and Environmental Microbiology, 2012, 78, 7163-7165.	3.1	33
54	Binding analyses of Cry1Ab and Cry1Ac with membrane vesicles from Bacillus thuringiensis-resistant and -susceptible Ostrinia nubilalis. Biochemical and Biophysical Research Communications, 2004, 323, 52-57.	2.1	32

#	Article	IF	CITATIONS
55	Distribution, frequency and diversity of Bacillus thuringiensis in olive tree environments in Spain. Systematic and Applied Microbiology, 1997, 20, 652-658.	2.8	31
56	Use of Bacillus thuringiensis Toxins for Control of the Cotton Pest Earias insulana (Boisd.) (Lepidoptera: Noctuidae). Applied and Environmental Microbiology, 2006, 72, 437-442.	3.1	30
57	Midgut aminopeptidase N isoforms from Ostrinia nubilalis: Activity characterization and differential binding to Cry1Ab and Cry1Fa proteins from Bacillus thuringiensis. Insect Biochemistry and Molecular Biology, 2013, 43, 924-935.	2.7	30
58	Insecticidal spectrum and mode of action of the Bacillus thuringiensis Vip3Ca insecticidal protein. Journal of Invertebrate Pathology, 2017, 142, 60-67.	3.2	30
59	Assessment of the Antimicrobial Activity and the Entomocidal Potential of Bacillus thuringiensis Isolates from Algeria. Toxins, 2017, 9, 139.	3.4	30
60	Testing Suitability of Brush Border Membrane Vesicles Prepared from Whole Larvae from Small Insects for Binding Studies with Bacillus thuringiensis CrylA(b) Crystal Protein. Journal of Invertebrate Pathology, 1995, 65, 318-320.	3.2	29
61	<i>Bacillus thuringiensis</i> Cry1Ac Toxin-Binding and Pore-Forming Activity in Brush Border Membrane Vesicles Prepared from Anterior and Posterior Midgut Regions of Lepidopteran Larvae. Applied and Environmental Microbiology, 2008, 74, 1710-1716.	3.1	29
62	Sepiapterin reductase in human amniotic and skin fibroblasts, chorionic villi, and various blood fractions. Clinica Chimica Acta, 1988, 174, 271-282.	1.1	28
63	Analyses of Cry1Ab Binding in Resistant and Susceptible Strains of the European Corn Borer, Ostrinia nubilalis (Hul^bner) (Lepidoptera: Crambidae). Applied and Environmental Microbiology, 2006, 72, 5318-5324.	3.1	28
64	Genome sequence of SeIV-1, a novel virus from the Iflaviridae family infective to Spodoptera exigua. Journal of Invertebrate Pathology, 2012, 109, 127-133.	3.2	28
65	Binding and Toxicity of <l>Bacillus thuringiensis</l> Protein Cry1C to Susceptible and Resistant Diamondback Moth (Lepidoptera: Plutellidae). Journal of Economic Entomology, 2000, 93, 1-6.	1.8	27
66	Critical amino acids for the insecticidal activity of Vip3Af from Bacillus thuringiensis: Inference on structural aspects. Scientific Reports, 2018, 8, 7539.	3.3	27
67	Screening for Bacillus thuringiensis Crystal Proteins Active against the Cabbage Looper, Trichoplusia ni. Journal of Invertebrate Pathology, 2000, 76, 70-75.	3.2	26
68	Insecticidal Activity and Synergistic Combinations of Ten Different Bt Toxins against Mythimna separata (Walker). Toxins, 2018, 10, 454.	3.4	26
69	Broadâ€spectrum crossâ€resistance in <i>Spodoptera exigua</i> from selection with a marginally toxic Cry protein. Pest Management Science, 2009, 65, 645-650.	3.4	25
70	Inheritance of resistance to aBacillus thuringiensistoxin in a field population of diamondback moth (Plutella xylostella). Pest Management Science, 1995, 43, 115-120.	0.4	24
71	Lyophilization of lepidopteran midguts: a preserving method for Bacillus thuringiensis toxin binding studies. Journal of Invertebrate Pathology, 2004, 85, 182-187.	3.2	24
72	Variability in the cadherin gene in an Ostrinia nubilalis strain selected for Cry1Ab resistance. Insect Biochemistry and Molecular Biology, 2009, 39, 218-223.	2.7	24

#	Article	IF	CITATIONS
73	Catecholamines in drosophila melanogaster: DOPA and dopamine accumulation during development. Insect Biochemistry and Molecular Biology, 1992, 22, 491-494.	2.7	23
74	Mitochondrial Dna Sequence Variation among Geographic Strains of Diamondback Moth (Lepidoptera:) Tj ETQc	0 0 0 rgB ⁻	T /Oyerlock 10

75	Identification and characterization of the new Bacillus thuringiensis serovars pirenaica (serotype) Tj ETQq1 1 0.7	84314 rgB1 3.1	Г /Overloci 21
76	Characterization of Bacillus thuringiensis isolates by their insecticidal activity and their production of Cry and Vip3 proteins. PLoS ONE, 2018, 13, e0206813.	2.5	21
77	Role of Bacillus thuringiensis Cry1A toxins domains in the binding to the ABCC2 receptor from Spodoptera exigua. Insect Biochemistry and Molecular Biology, 2018, 101, 47-56.	2.7	21
78	Quantitative real-time PCR with SYBR Green detection to assess gene duplication in insects: study of gene dosage in Drosophila melanogaster (Diptera) and in Ostrinia nubilalis (Lepidoptera). BMC Research Notes, 2011, 4, 84.	1.4	19
79	Analysis of cross-resistance to Vip3 proteins in eight insect colonies, from four insect species, selected for resistance to Bacillus thuringiensis insecticidal proteins. Journal of Invertebrate Pathology, 2018, 155, 64-70.	3.2	19
80	Unraveling the Composition of Insecticidal Crystal Proteins in Bacillus thuringiensis: a Proteomics Approach. Applied and Environmental Microbiology, 2020, 86, .	3.1	19
81	Extent of Variation of the Bacillus thuringiensis Toxin Reservoir: the Case of the Geranium Bronze, Cacyreus marshalli Butler (Lepidoptera: Lycaenidae). Applied and Environmental Microbiology, 2002, 68, 4090-4094.	3.1	18
82	Correlation between serovars of Bacillus thuringiensis and type I β-exotoxin production. Journal of Invertebrate Pathology, 2003, 82, 57-62.	3.2	18
83	Lack of Cry1Fa Binding to the Midgut Brush Border Membrane in a Resistant Colony of Plutella xylostella Moths with a Mutation in the <i>ABCC2</i> Locus. Applied and Environmental Microbiology, 2012, 78, 6759-6761.	3.1	17
84	High Bacterial Agglutination Activity in a Single-CRD C-Type Lectin from Spodoptera exigua (Lepidoptera: Noctuidae). Biosensors, 2017, 7, 12.	4.7	17
85	Structural Domains of the Bacillus thuringiensis Vip3Af Protein Unraveled by Tryptic Digestion of Alanine Mutants. Toxins, 2019, 11, 368.	3.4	17
86	The Spodoptera exigua ABCC2 Acts as a Cry1A Receptor Independently of its Nucleotide Binding Domain II. Toxins, 2019, 11, 172.	3.4	17
87	Bacillus thuringiensis Toxins: Functional Characterization and Mechanism of Action. Toxins, 2020, 12, 785.	3.4	17
88	Proposal towards a Normalization of Pteridine Nomenclature. Pteridines, 1990, 2, 129-132.	0.5	16
89	Identification of pteridines in the firebug, Pyrrhocoris apterus (L.) (Heteroptera, Pyrrhocoridae) by high -performance liquid chromatography. Journal of Chromatography A, 1996, 724, 193-197.	3.7	16

90 Characterization of Bacillus thuringiensis ser. balearica (Serotype H48) and ser. navarrensis (Serotype) Tj ETQq0 0 0 rgBT /Overlock 10 T

#	Article	IF	CITATIONS
91	Update on the detection of beta-exotoxin in Bacillus thuringiensis strains by HPLC analysis. Journal of Applied Microbiology, 2001, 90, 643-647.	3.1	16
92	Ecological distribution and characterization of four collections of <i>Bacillus thuringiensis </i> strains. Journal of Basic Microbiology, 2009, 49, 152-157.	3.3	16
93	Domain Shuffling between Vip3Aa and Vip3Ca: Chimera Stability and Insecticidal Activity against European, American, African, and Asian Pests. Toxins, 2020, 12, 99.	3.4	16
94	Occurrence of three different binding sites forBacillus thuringiensisδ-endotoxins in the midgut brush border membrane of the potato tuber moth,phthorimaea operculella(zeller). Archives of Insect Biochemistry and Physiology, 1994, 26, 315-327.	1.5	15
95	Susceptibility of Grapholita molesta (Busck, 1916) to formulations of Bacillus thuringiensis, individual toxins and their mixtures. Journal of Invertebrate Pathology, 2016, 141, 1-5.	3.2	14
96	Encapsulation of the Bacillus thuringiensis secretable toxins Vip3Aa and Cry1Ia in Pseudomonas fluorescens. Biological Control, 2013, 66, 159-165.	3.0	13
97	Isolating, characterising and identifying a Cry1Ac resistance mutation in field populations of Helicoverpa punctigera. Scientific Reports, 2018, 8, 2626.	3.3	13
98	Reduced Membrane-Bound Alkaline Phosphatase Does Not Affect Binding of Vip3Aa in a Heliothis virescens Resistant Colony. Toxins, 2020, 12, 409.	3.4	13
99	Identification of 5,6,7,8-tetrahydropterin and 5,6,7,8-tetrahydrobiopterin in Drosophila melanogaster. Biochemical and Biophysical Research Communications, 1988, 152, 49-55.	2.1	12
100	Selective inhibition of binding of Bacillus thuringiensis Cry1Ab toxin to cadherin-like and aminopeptidase proteins in brush-border membranes and dissociated epithelial cells from Bombyx mori. Biochemical Journal, 2008, 409, 215-221.	3.7	12
101	Specific Binding of Radiolabeled Cry1Fa Insecticidal Protein from Bacillus thuringiensis to Midgut Sites in Lepidopteran Species. Applied and Environmental Microbiology, 2012, 78, 4048-4050.	3.1	12
102	Efficacy and Resistance Management Potential of a Modified Vip3C Protein for Control of Spodoptera frugiperda in Maize. Scientific Reports, 2018, 8, 16204.	3.3	12
103	The Rapid Evolution of Resistance to Vip3Aa Insecticidal Protein in Mythimna separata (Walker) Is Not Related to Altered Binding to Midgut Receptors. Toxins, 2021, 13, 364.	3.4	12
104	Sepiapterin reductase in cultured human cells. Biochemical and Biophysical Research Communications, 1987, 148, 1475-1481.	2.1	11
105	Shared Binding Sites for the Bacillus thuringiensis Proteins Cry3Bb, Cry3Ca, and Cry7Aa in the African Sweet Potato Pest Cylas puncticollis (Brentidae). Applied and Environmental Microbiology, 2014, 80, 7545-7550.	3.1	11
106	Characterization of two groups of <i>Spodoptera exigua</i> Hübner (Lepidoptera: Noctuidae) Câ€ŧype lectins and insights into their role in defense against the densovirus JcDV. Archives of Insect Biochemistry and Physiology, 2018, 97, e21432.	1.5	11
107	Purification of guanosine triphosphate cyclohydrolase I from Escherichia coli. Journal of Chromatography A, 1986, 357, 283-292.	3.7	10
108	Regulation of pteridine biosynthesis and aromatic amino acid hydroxylation inDrosophila melanogaster. Biochemical Genetics, 1989, 27, 59-76.	1.7	10

#	Article	IF	CITATIONS
109	Developmental and biochemical studies on the phenylalanine hydroxylation system in Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 1992, 22, 633-638.	2.7	10
110	Artefactual band patterns by SDS-PAGE of the Vip3Af protein in the presence of proteases mask the extremely high stability of this protein. International Journal of Biological Macromolecules, 2018, 120, 59-65.	7.5	10
111	Genetic and biochemical characterization of little isoxanthopterin (lix), a gene controlling dihydropterin oxidase activity in Drosophila melanogaster. Molecular Genetics and Genomics, 1991, 230, 97-103.	2.4	9
112	Binding analysis of Bacillus thuringiensis Cry1 proteins in the sugarcane borer, Diatraea saccharalis (Lepidoptera: Crambidae). Journal of Invertebrate Pathology, 2015, 127, 32-34.	3.2	9
113	Critical Domains in the Specific Binding of Radiolabeled Vip3Af Insecticidal Protein to Brush Border Membrane Vesicles from <i>Spodoptera</i> spp. and Cultured Insect Cells. Applied and Environmental Microbiology, 2021, 87, e0178721.	3.1	9
114	Use of reversed-phase C18 Sep-Pak cartridges for the purification and concentration of sepiapterin and other pteridines. Journal of Chromatography A, 1985, 350, 389-398.	3.7	8
115	Nickel complexes of sepiapterin and 6-acetyldihydrohomopterin, a pyrimidodiazepine from Drosophila. Bioorganic Chemistry, 1985, 13, 296-311.	4.1	8
116	Characterization of sepiapterin reductase activity from Drosophila melanogaster. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1996, 113, 131-136.	1.6	8
117	A Genomic and Proteomic Approach to Identify and Quantify the Expressed Bacillus thuringiensis Proteins in the Supernatant and Parasporal Crystal. Toxins, 2018, 10, 193.	3.4	8
118	Structural and functional role of Domain I for the insecticidal activity of the <scp>Vip3Aa</scp> protein from <i>Bacillus thuringiensis</i> . Microbial Biotechnology, 2022, 15, 2607-2618.	4.2	8
119	A comparative study of Drosphila phenylalanine hydroxylase with a natural and a synthetic tetrahydropterin as cofactor. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1992, 103, 557-562.	0.2	7
120	Leucine Transport Is Affected by Bacillus thuringiensis Cry1 Toxins in Brush Border Membrane Vesicles from Ostrinia nubilalis Hb (Lepidoptera: Pyralidae) and Sesamia nonagrioides Lefebvre (Lepidoptera:) Tj ETQq0 0	0rggBaT/O∖	vertock 10 Tf
121	Enhancing the multiplication of nucleopolyhedrovirus in vitro by manipulation of the pH. Journal of Virological Methods, 2009, 161, 254-258.	2.1	5
122	Repetitive recycling of guanosine triphosphate cyclohydrolase I for synthesis of dihydroneopterin triphosphate. Analytical Biochemistry, 1989, 176, 15-18.	2.4	4
123	Effect of substitutions of key residues on the stability and the insecticidal activity of Vip3Af from Bacillus thuringiensis. Journal of Invertebrate Pathology, 2021, 186, 107439.	3.2	4
124	Comparison of <scp><i>in vitro</i></scp> and <scp><i>in vivo</i></scp> binding site competition of <scp><i>Bacillus thuringiensis</i> Cry1</scp> proteins in two important maize pests. Pest Management Science, 2022, 78, 1457-1466.	3.4	4
125	Alteration of a Cry1A Shared Binding Site in a Cry1Ab-Selected Colony of Ostrinia furnacalis. Toxins, 2022, 14, 32.	3.4	4
126	In vivo competition assays between Vip3 proteins confirm the occurrence of shared binding sites in Spodoptera littoralis. Scientific Reports, 2022, 12, 4578.	3.3	4

#	Article	IF	CITATIONS
127	Different binding sites for Bacillus thuringiensis Cry1Ba and Cry9Ca proteins in the European corn borer, Ostrinia nubilalis (Hübner). Journal of Invertebrate Pathology, 2014, 120, 1-3.	3.2	3
128	Hetero-oligomerization of <i>Bacillus thuringiensis</i> Cry1A proteins enhance binding to the ABCC2 transporter of <i>Spodoptera exigua</i> . Biochemical Journal, 2021, 478, 2589-2600.	3.7	3
129	Binding of individual Bacillus thuringiensis Cry proteins to the olive moth Prays oleae (Lepidoptera:) Tj ETQq1 1 0.	.784314 r 3.2	gBT /Overloo
130	Ephestia kuehniella tolerance to Bacillus thuringiensis Cry1Aa is associated with reduced oligomer formation. Biochemical and Biophysical Research Communications, 2017, 482, 808-813.	2.1	2
131	Comparison of Different Methodologies for Binding Assays of Bacillus thuringiensis Toxins to Membrane Vesicles from Insect Midguts. Journal of Invertebrate Pathology, 2001, 78, 275-277.	3.2	1
132	Evaluation of the Toxicity of Supernatant Cultures and Spore–Crystal Mixtures of Bacillus thuringiensis Strains Isolated from Algeria. Current Microbiology, 2020, 77, 2904-2914.	2.2	1
133	Editorial for Special Issue: The Insecticidal Bacterial Toxins in Modern Agriculture. Toxins, 2017, 9, 396.	3.4	Ο