
Jialiang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2557791/publications.pdf Version: 2024-02-01

Ιμιμανό Ζημανό

#	Article	IF	CITATIONS
1	A promising approach for the recovery of high value-added metals from spent lithium-ion batteries. Journal of Power Sources, 2017, 351, 192-199.	7.8	371
2	Fundamental Theory of Biodegradable Metals—Definition, Criteria, and Design. Advanced Functional Materials, 2019, 29, 1805402.	14.9	226
3	Sustainable and Facile Method for the Selective Recovery of Lithium from Cathode Scrap of Spent LiFePO ₄ Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 5626-5631.	6.7	188
4	Efficient and economical recovery of lithium, cobalt, nickel, manganese from cathode scrap of spent lithium-ion batteries. Journal of Cleaner Production, 2018, 204, 437-446.	9.3	166
5	Direct Regeneration of Spent LiFePO ₄ Cathode Material by a Green and Efficient One-Step Hydrothermal Method. ACS Sustainable Chemistry and Engineering, 2020, 8, 17622-17628.	6.7	96
6	Facile and efficient recovery of lithium from spent LiFePO ₄ batteries <i>via</i> air oxidation–water leaching at room temperature. Green Chemistry, 2022, 24, 152-162.	9.0	84
7	E-pH Diagrams for the Li-Fe-P-H ₂ O System from 298 to 473 K: Thermodynamic Analysis and Application to the Wet Chemical Processes of the LiFePO ₄ Cathode Material. Journal of Physical Chemistry C, 2019, 123, 14207-14215.	3.1	63
8	Recovery of valuable metals from spent LiNixCoyMnzO2 cathode material via phase transformation and Purification Technology, 2021, 267, 118609.	7.9	46
9	A breakthrough method for the recycling of spent lithium-ion batteries without pre-sorting. Green Chemistry, 2021, 23, 8434-8440.	9.0	30
10	An advanced strategy of "metallurgy before sorting―for recycling spent entire ternary lithium-ion batteries. Journal of Cleaner Production, 2022, 361, 132268.	9.3	29
11	Efficient Phase Transformation of γ-Al ₂ O ₃ to α-Al ₂ O ₃ in Spent Hydrodesulphurization Catalyst by Microwave Roasting Method. Industrial & Engineering Chemistry Research, 2019, 58, 1495-1501.	3.7	25
12	Novel geochemistry-inspired method for the deep removal of vanadium from molybdate solution. Journal of Hazardous Materials, 2017, 331, 210-217.	12.4	15
13	Efficient Recovery of Copper and Cobalt from the Matte–Slag Mixture of ISA Furnace by Injection of Coke and Pyrite. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 3118-3126.	2.1	6