Marc Amyot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2557508/publications.pdf Version: 2024-02-01

1	A consensus protocol for the recovery of mercury methylation genes from metagenomes. Molecular		
T	Ecology Resources, 2023, 23, 190-204.	2.2	10
2	The Arctic: a sink for mercury. Tellus, Series B: Chemical and Physical Meteorology, 2022, 56, 397.	0.8	103
3	Effects of plants and biochar on the performance of treatment wetlands for removal of the pesticide chlorantraniliprole from agricultural runoff. Ecological Engineering, 2022, 175, 106477.	1.6	9
4	Age-specific trace element bioaccumulation in grey seals from the Gulf of St. Lawrence. Chemosphere, 2022, 294, 133640.	4.2	1
5	Climate change and mercury in the Arctic: Abiotic interactions. Science of the Total Environment, 2022, 824, 153715.	3.9	42
6	Mercury, selenium and arsenic concentrations in Canadian freshwater fish and a perspective on human consumption intake and risk. Journal of Hazardous Materials Advances, 2022, 6, 100060.	1.2	4
7	Grazer-mediated regeneration of methylmercury, inorganic mercury, and other metals in freshwater. Science of the Total Environment, 2022, 829, 154553.	3.9	1
8	Experimental evidence for recovery of mercury-contaminated fish populations. Nature, 2022, 601, 74-78.	13.7	38
9	Diet influences on growth and mercury concentrations of two salmonid species from lakes in the eastern Canadian Arctic. Environmental Pollution, 2021, 268, 115820.	3.7	10
10	Hydrologic control on winter dissolved oxygen mediates arsenic cycling in a small subarctic lake. Limnology and Oceanography, 2021, 66, S30.	1.6	18
11	Mercury concentrations and associations with dissolved organic matter are modified by water residence time in eastern Canadian lakes along a 30Ű latitudinal gradient. Limnology and Oceanography, 2021, 66, S64.	1.6	10
12	Mapping metal (Hg, As, Se), lipid and protein levels within fish muscular system in two fish species (Striped Bass and Northern Pike). Chemosphere, 2021, 265, 129036.	4.2	20
13	Understanding Food Web Mercury Accumulation Through Trophic Transfer and Carbon Processing along a River Affected by Recent Run-of-river Dams. Environmental Science & Technology, 2021, 55, 2949-2959.	4.6	18
14	Assessment of In Vitro Bioaccessibility and In Vivo Oral Bioavailability as Complementary Tools to Better Understand the Effect of Cooking on Methylmercury, Arsenic, and Selenium in Tuna. Toxics, 2021, 9, 27.	1.6	3
15	Effects of Speciation, Cooking and Changes in Bioaccessibility on Methylmercury Exposure Assessment for Contrasting Diets of Fish and Marine Mammals. International Journal of Environmental Research and Public Health, 2021, 18, 2565.	1.2	2
16	Microbial Diversity and Mercury Methylation Activity in Periphytic Biofilms at a Run-of-River Hydroelectric Dam and Constructed Wetlands. MSphere, 2021, 6, .	1.3	7
17	Role of organic matter and microbial communities in mercury retention and methylation in sediments near run-of-river hydroelectric dams. Science of the Total Environment, 2021, 774, 145686.	3.9	17
18	Photooxidation of arsenic in pristine and mine-impacted Canadian subarctic freshwater systems. Journal of Hazardous Materials Advances, 2021, 2, 100006.	1.2	5

#	Article	IF	CITATIONS
19	Trophic structure and mercury transfer in the subarctic fish community of Great Slave Lake, Northwest Territories, Canada. Journal of Great Lakes Research, 2020, 46, 402-413.	0.8	9
20	Role of prey subcellular distribution on the bioaccumulation of yttrium (Y) in the rainbow trout. Environmental Pollution, 2020, 258, 113804.	3.7	10
21	Mobilization and Transformation of Mercury Across a Dammed Boreal River Are Linked to Carbon Processing and Hydrology. Water Resources Research, 2020, 56, e2020WR027951.	1.7	11
22	Selenium Interactions with Algae: Chemical Processes at Biological Uptake Sites, Bioaccumulation, and Intracellular Metabolism. Plants, 2020, 9, 528.	1.6	31
23	Impact of the Carbon Cycle on Mercury Dynamics in a River Impacted by Run-Of-The-River Power Plants, Logging and Forest Fire. , 2020, , .		0
24	Toxicity and Subcellular Fractionation of Yttrium in Three Freshwater Organisms: <i>Daphnia magna</i> , <i>Chironomus riparius,</i> and <i>Oncorhynchus mykiss</i> . ACS Omega, 2019, 4, 13747-13755.	1.6	32
25	Arsenic bioaccumulation in subarctic fishes of a mine-impacted bay on Great Slave Lake, Northwest Territories, Canada. PLoS ONE, 2019, 14, e0221361.	1.1	17
26	Mercury and selenium distribution in key tissues and early life stages of Yellow Perch (Perca) Tj ETQq0 0 0 rgBT /	Overlock 1	0
27	Athabasca oil sands region snow contains efficient micron and nano-sized ice nucleating particles. Environmental Pollution, 2019, 252, 289-295.	3.7	13
28	Global Metaâ€Analysis on the Relationship Between Mercury and Dissolved Organic Carbon in	1 9	50

20	Freshwater Environments. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1508-1523.	1.5	00
29	The fish or the egg: Maternal transfer and subcellular partitioning of mercury and selenium in Yellow Perch (Perca flavescens). Science of the Total Environment, 2019, 675, 604-614.	3.9	19
30	Occurrence of pesticides in fruits and vegetables from organic and conventional agriculture by QuEChERS extraction liquid chromatography tandem mass spectrometry. Food Control, 2019, 104, 74-82.	2.8	49
31	An ecological microsystem to treat waste oil contaminated soil: Using phytoremediation assisted by fungi and local compost, on a mixed-contaminant site, in a cold climate. Science of the Total Environment, 2019, 672, 732-742.	3.9	22
32	Quality survey and spatiotemporal variations of atrazine and desethylatrazine in drinking water in Quebec, Canada. Science of the Total Environment, 2019, 671, 578-585.	3.9	46
33	Widespread occurrence and spatial distribution of glyphosate, atrazine, and neonicotinoids pesticides in the St. Lawrence and tributary rivers. Environmental Pollution, 2019, 250, 29-39.	3.7	131
34	Local fungi, willow and municipal compost effectively remediate petroleum-contaminated soil in the Canadian North. Chemosphere, 2019, 220, 47-55.	4.2	23
35	Environmental Drivers of Rare Earth Element Bioaccumulation in Freshwater Zooplankton. Environmental Science & Technology, 2019, 53, 1650-1660.	4.6	26
36	Bioremediation of engine-oil contaminated soil using local residual organic matter. PeerJ, 2019, 7,	0.9	8

36 e7389.

#	Article	lF	CITATIONS
37	Evaluation of on-line concentration coupled to liquid chromatography tandem mass spectrometry for the quantification of neonicotinoids and fipronil in surface water and tap water. Analytical and Bioanalytical Chemistry, 2018, 410, 2765-2779.	1.9	52
38	Mercury transport and human exposure from global marine fisheries. Scientific Reports, 2018, 8, 6705.	1.6	73
39	Cooking and co-ingested polyphenols reduce in vitro methylmercury bioaccessibility from fish and may alter exposure in humans. Science of the Total Environment, 2018, 616-617, 863-874.	3.9	35
40	Ratio of Methylmercury to Dissolved Organic Carbon in Water Explains Methylmercury Bioaccumulation Across a Latitudinal Gradient from North-Temperate to Arctic Lakes. Environmental Science & Technology, 2018, 52, 79-88.	4.6	28
41	Enzymatic validation of speciesâ€specific protocols for metal subcellular fractionation in freshwater animals. Limnology and Oceanography: Methods, 2018, 16, 537-555.	1.0	6
42	Do snow and ice alter urban air quality?. Atmospheric Environment, 2018, 186, 266-268.	1.9	20
43	IMALIRIJIIT: a community-based environmental monitoring program in the George River watershed, Nunavik, Canada. Ecoscience, 2018, 25, 381-399.	0.6	32
44	Age matters: Submersion period shapes community composition of lake biofilms under glyphosate stress. Facets, 2018, 3, 934-951.	1.1	13
45	Gut Microbiome of the Canadian Arctic Inuit. MSphere, 2017, 2, .	1.3	40
46	Fate and Trophic Transfer of Rare Earth Elements in Temperate Lake Food Webs. Environmental Science & Technology, 2017, 51, 6009-6017.	4.6	75
47	Rare earth elements in freshwater, marine, and terrestrial ecosystems in the eastern Canadian Arctic. Environmental Sciences: Processes and Impacts, 2017, 19, 1336-1345.	1.7	77
48	Differential effects of plant root systems on nickel, copper and silver bioavailability in contaminated soil. Chemosphere, 2017, 168, 131-138.	4.2	31
49	Freshwater sample preservation for the analysis of dissolved low molecular mass thiols. Limnology and Oceanography: Methods, 2017, 15, 875-886.	1.0	1
50	Photodemethylation of Methylmercury in Eastern Canadian Arctic Thaw Pond and Lake Ecosystems. Environmental Science & Technology, 2016, 50, 3511-3520.	4.6	34
51	Mercury, hydroquinone and clobetasol propionate in skin lightening products in West Africa and Canada. Environmental Research, 2016, 150, 403-410.	3.7	38
52	Receptors rather than signals change in expression in four physiological regulatory networks during evolutionary divergence in threespine stickleback. Molecular Ecology, 2016, 25, 3416-3427.	2.0	30
53	Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences, 2015, 12, 7129-7167.	1.3	354
54	Bioaccumulation and Trophic Transfer of Mercury and Selenium in African Sub-Tropical Fluvial Reservoirs Food Webs (Burkina Faso). PLoS ONE, 2015, 10, e0123048.	1.1	50

#	Article	IF	CITATIONS
55	Relationship between Extracellular Low-Molecular-Weight Thiols and Mercury Species in Natural Lake Periphytic Biofilms. Environmental Science & Technology, 2015, 49, 7709-7716.	4.6	81
56	Mercury methylation and demethylation by periphyton biofilms and their host in a fluvial wetland of the St. Lawrence River (QC, Canada). Science of the Total Environment, 2015, 512-513, 464-471.	3.9	47
57	High Methylmercury in Arctic and Subarctic Ponds is Related to Nutrient Levels in the Warming Eastern Canadian Arctic. Environmental Science & Technology, 2015, 49, 7743-7753.	4.6	54
58	Mercury Physicochemical and Biogeochemical Transformation in the Atmosphere and at Atmospheric Interfaces: A Review and Future Directions. Chemical Reviews, 2015, 115, 3760-3802.	23.0	323
59	Spatio-temporal variations in biomass and mercury concentrations of epiphytic biofilms and their host in a large river wetland (Lake St. Pierre, Qc, Canada). Environmental Pollution, 2015, 197, 221-230.	3.7	22
60	Mercury in freshwater ecosystems of the Canadian Arctic: Recent advances on its cycling and fate. Science of the Total Environment, 2015, 509-510, 41-66.	3.9	64
61	Mercury in the marine environment of the Canadian Arctic: Review of recent findings. Science of the Total Environment, 2015, 509-510, 67-90.	3.9	106
62	Ecological determinants of methylmercury bioaccumulation in benthic invertebrates of polar desert lakes. Polar Biology, 2014, 37, 1785-1796.	0.5	4
63	Effects of Experimental Thermocline and Oxycline Deepening on Methylmercury Bioaccumulation in a Canadian Shield Lake. Environmental Science & Technology, 2014, 48, 2626-2634.	4.6	26
64	An investigation of enhanced mercury bioaccumulation in fish from offshore feeding. Ecotoxicology, 2013, 22, 1020-1032.	1.1	16
65	Mercury, arsenic and selenium concentrations in water and fish from sub-Saharan semi-arid freshwater reservoirs (Burkina Faso). Science of the Total Environment, 2013, 444, 243-254.	3.9	78
66	Divalent Base Cations Hamper Hg ^{II} Uptake. Environmental Science & Technology, 2012, 46, 6645-6653.	4.6	22
67	The fate of mercury in Arctic terrestrial and aquatic ecosystems, a review. Environmental Chemistry, 2012, 9, 321.	0.7	106
68	Factors affecting methylmercury biomagnification by a widespread aquatic invertebrate predator, the phantom midge larvae Chaoborus. Environmental Pollution, 2012, 165, 100-108.	3.7	9
69	Shifts in elemental composition, methylmercury content and δ ¹⁵ N ratio during growth of a High Arctic copepod. Freshwater Biology, 2012, 57, 1228-1240.	1.2	13
70	Effects of various cooking methods and food components on bioaccessibility of mercury from fish. Environmental Research, 2011, 111, 1064-1069.	3.7	91
71	Snow - a photobiochemical exchange platform for volatile and semi-volatile organic compounds with the atmosphere. Environmental Chemistry, 2011, 8, 62.	0.7	38
72	Methanogens: Principal Methylators of Mercury in Lake Periphyton. Environmental Science & Technology, 2011, 45, 7693-7700.	4.6	271

#	Article	IF	CITATIONS
73	Habitat-specific bioaccumulation of methylmercury in invertebrates of small mid-latitude lakes in North America. Environmental Pollution, 2011, 159, 10-17.	3.7	53
74	Carbon sources for lake food webs in the Canadian High Arctic and other regions of Arctic North America. Polar Biology, 2010, 33, 1111-1123.	0.5	31
75	Role of ultra-violet radiation, mercury and copper on the stability of dissolved glutathione in natural and artificial freshwater and saltwater. Chemosphere, 2010, 80, 1314-1320.	4.2	22
76	Response to "Comparative estimate of P fluxes in lakes―by J. M. Sereda and J. J. Hudson. Limnology and Oceanography, 2010, 55, 466-468.	1.6	0
77	Predicting Late Myocardial Recovery and Outcomes in the Early Hours of ST-Segment Elevation Myocardial Infarction. Journal of the American College of Cardiology, 2010, 55, 2459-2469.	1.2	209
78	Elevated methylmercury in High Arctic <i>Daphnia</i> and the role of productivity in controlling their distribution. Global Change Biology, 2009, 15, 706-718.	4.2	41
79	Importance of elemental mercury in lake sediments. Chemosphere, 2009, 74, 1098-1103.	4.2	51
80	Beaver Ponds Increase Methylmercury Concentrations in Canadian Shield Streams along Vegetation and Pond-Age Gradients. Environmental Science & amp; Technology, 2009, 43, 5605-5611.	4.6	52
81	Seasonal methylmercury dynamics in water draining three beaver impoundments of varying age. Journal of Geophysical Research, 2009, 114, .	3.3	10
82	Mercury chemical transformations in the gas, aqueous and heterogeneous phases: state-of-the-art science and uncertainties. , 2009, , 459-501.		22
83	Spatial coverage and temporal trends of atmospheric mercury measurements in Polar Regions. , 2009, , 293-321.		2
84	Nitrogen transfer from sea to land via commercial fisheries. Nature Geoscience, 2008, 1, 111-112.	5.4	39
85	Metamorphosis in Chironomids, More than Mercury Supply, Controls Methylmercury Transfer to Fish in High Arctic Lakes. Environmental Science & Technology, 2008, 42, 9110-9115.	4.6	49
86	Fish decomposition in boreal lakes and biogeochemical implications. Limnology and Oceanography, 2008, 53, 1988-1996.	1.6	30
87	A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow. Atmospheric Chemistry and Physics, 2008, 8, 1445-1482.	1.9	426
88	Potential for Mercury Reduction by Microbes in the High Arctic. Applied and Environmental Microbiology, 2007, 73, 2230-2238.	1.4	88
89	Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16586-16591.	3.3	398
90	Underwater infrared video system for behavioral studies in lakes. Limnology and Oceanography: Methods, 2007, 5, 371-378.	1.0	12

#	Article	IF	CITATIONS
91	Influence of temperate mixed and deciduous tree covers on Hg concentrations and photoredox transformations in snow. Geochimica Et Cosmochimica Acta, 2007, 71, 2448-2462.	1.6	37
92	Mercury transformations and fluxes in sediments of a riverine wetland. Geochimica Et Cosmochimica Acta, 2007, 71, 3393-3406.	1.6	57
93	Mercury distribution, partitioning and speciation in coastal vs. inland High Arctic snow. Geochimica Et Cosmochimica Acta, 2007, 71, 3419-3431.	1.6	53
94	Biological and Chemical Redox Transformations of Mercury in Fresh and Salt Waters of the High Arctic during Spring and Summer. Environmental Science & Technology, 2007, 41, 1883-1888.	4.6	48
95	EVASION OF ADDED ISOTOPIC MERCURY FROM A NORTHERN TEMPERATE LAKE. Environmental Toxicology and Chemistry, 2007, 26, 53.	2.2	30
96	Air-water gas exchange of mercury in the Bay Saint François wetlands: Observation and model parameterization. Journal of Geophysical Research, 2006, 111, .	3.3	17
97	Gross Photoreduction Kinetics of Mercury in Temperate Freshwater Lakes and Rivers:Â Application to a General Model of DGM Dynamics. Environmental Science & Technology, 2006, 40, 837-843.	4.6	91
98	Relationship between the loading rate of inorganic mercury to aquatic ecosystems and dissolved gaseous mercury production and evasion. Chemosphere, 2006, 65, 2199-2207.	4.2	24
99	Temporal and spatial distribution and production of dissolved gaseous mercury in the Bay St. Fran§ois wetland, in the St. Lawrence River, Quebec, Canada. Geochimica Et Cosmochimica Acta, 2006, 70, 2665-2678.	1.6	22
100	New Evidence on Variations of Human Body Burden of Methylmercury from Fish Consumption. Environmental Health Perspectives, 2006, 114, 302-306.	2.8	91
101	FATE OF MERCURY ACCUMULATED BY BLOWFLIES FEEDING ON FISH CARCASSES. Environmental Toxicology and Chemistry, 2005, 24, 526.	2.2	12
102	An Ecosystem Approach to Describe the Mercury Issue in Canada: From Mercury Sources to Human Health. , 2005, , 451-466.		3
103	Dark Oxidation of Dissolved and Liquid Elemental Mercury in Aquatic Environments. Environmental Science & Technology, 2005, 39, 110-114.	4.6	71
104	Relationship between DOC photochemistry and mercury redox transformations in temperate lakes and wetlands. Geochimica Et Cosmochimica Acta, 2005, 69, 1917-1924.	1.6	76
105	Diel variations in photoinduced oxidation of Hg0 in freshwater. Chemosphere, 2005, 59, 977-981.	4.2	31
106	Mercury transfer from fish carcasses to scavengers in boreal lakes: the use of stable isotopes of mercury. Environmental Pollution, 2005, 134, 13-22.	3.7	28
107	The Arctic: a sink for mercury. Tellus, Series B: Chemical and Physical Meteorology, 2004, 56, 397-403.	0.8	144
108	New Directions: The role of bioaerosols in atmospheric chemistry and physics. Atmospheric Environment, 2004, 38, 1231-1232.	1.9	150

#	Article	IF	CITATIONS
109	Formation and evasion of dissolved gaseous mercury in large enclosures amended with 200HgCl2. Atmospheric Environment, 2004, 38, 4279-4289.	1.9	60
110	Redox transformations of mercury in an Arctic snowpack at springtime. Atmospheric Environment, 2004, 38, 6763-6774.	1.9	91
111	An Easy Method to Measure Total Particulate Hg in Water Without Chemical Digestion. Water, Air, and Soil Pollution, 2004, 151, 3-10.	1.1	7
112	Total mercury determination in sand boxes from Montreal. Journal of Environmental Monitoring, 2004, 6, 903-906.	2.1	3
113	Photoinduced Oxidation of Hg0(aq) in the Waters from the St. Lawrence Estuary. Environmental Science & Technology, 2004, 38, 508-514.	4.6	77
114	Salmonâ€derived mercury and nutrients in a Lake Ontario spawning stream. Limnology and Oceanography, 2004, 49, 891-899.	1.6	41
115	Photoâ€induced Hg(II) reduction in snow from the remote and temperate Experimental Lakes Area (Ontario, Canada). Journal of Geophysical Research, 2003, 108, .	3.3	81
116	Behavior of mercury in snow from different latitudes. European Physical Journal Special Topics, 2003, 107, 45-48.	0.2	6
117	Dissolve gaseous mercury distribution in a wetland: Influence of macrophyte beds. European Physical Journal Special Topics, 2003, 107, 509-512.	0.2	1
118	Mercury accumulation and loss by necrophageous calliphoridae larvae (diptera). European Physical Journal Special Topics, 2003, 107, 1189-1191.	0.2	0
119	Microbiological degradation of atmospheric organic compounds. Geophysical Research Letters, 2002, 29, 34-1-34-4.	1.5	100
120	The Role of Mercury Redox Reactions in Snow on Snow-to-Air Mercury Transfer. Environmental Science & Technology, 2002, 36, 174-178.	4.6	197
121	Relating cadmium concentrations in three macrophyte-associated freshwater invertebrates to those in macrophytes, water and sediments. Environmental Pollution, 2002, 120, 759-769.	3.7	12
122	Photooxidation of Hg(0) in Artificial and Natural Waters. Environmental Science & Technology, 2001, 35, 1367-1372.	4.6	155
123	In situ high temporal resolution analysis of elemental mercury in natural waters. Analytica Chimica Acta, 2001, 447, 153-159.	2.6	30
124	Distribution and transformation of elemental mercury in the St. Lawrence River and Lake Ontario. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57, 155-163.	0.7	119
125	Mercury Waterâ^'Air Exchange over the Upper St. Lawrence River and Lake Ontario. Environmental Science & amp; Technology, 2000, 34, 3069-3078.	4.6	116
126	THE CHEMICAL CYCLE AND BIOACCUMULATION OF MERCURY. Annual Review of Ecology, Evolution, and Systematics, 1998, 29, 543-566.	6.7	1,249

#	Article	IF	CITATIONS
127	Production and Loss of Dissolved Gaseous Mercury in Coastal Seawater. Environmental Science & Technology, 1997, 31, 3606-3611.	4.6	223
128	Photochemical Formation of volatile mercury in high Arctic lakes. Environmental Toxicology and Chemistry, 1997, 16, 2054-2063.	2.2	89
129	Photochemical Formation of volatile mercury in high Arctic lakes. , 1997, 16, 2054.		5
130	Total metal burdens in the freshwater amphipod Gammarus fasciatus : contribution of various body parts and influence of gut contents. Freshwater Biology, 1996, 35, 363-373.	1.2	26
131	Sunlight-Induced Formation of Dissolved Gaseous Mercury in Lake Waters. Environmental Science & Technology, 1994, 28, 2366-2371.	4.6	265
132	Abiotic and Seasonal Factors Influencing Trace Metal Levels (Cd, Cu, Ni, Pb, and Zn) in the Freshwater Amphipod Gammarus fasciatus in Two Fluvial Lakes of the St. Lawrence River. Canadian Journal of Fisheries and Aquatic Sciences, 1994, 51, 2003-2016.	0.7	22
133	Firefly assay of ATP from freshwater zooplankton: Comparison of extraction methods. Environmental Toxicology and Water Quality, 1992, 7, 295-311.	0.7	4
134	Concentrations and Yields of Total Hg and MeHg in Large Boreal Rivers Linked to Water and Wetland Coverage in the Watersheds. Journal of Geophysical Research G: Biogeosciences, 0, , .	1.3	4