
Takashi Misawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2557286/publications.pdf Version: 2024-02-01

Τλέλομι Μιολιλλ

#	Article	IF	CITATIONS
1	The effects of magainin 2-derived and rationally designed antimicrobial peptides on Mycoplasma pneumoniae. PLoS ONE, 2022, 17, e0261893.	2.5	0
2	Helical Foldamers and Stapled Peptides as New Modalities in Drug Discovery: Modulators of Protein-Protein Interactions. Processes, 2022, 10, 924.	2.8	8
3	Development of Selective TGR5 Ligands Based on the 5,6,7,8â€∓etrahydroâ€5,5,8,8â€ŧetramethylnaphthalene Skeleton. ChemMedChem, 2021, 16, 458-462.	3.2	4
4	Design and synthesis of novel estrogen receptor antagonists with acetal containing biphenylmethane skeleton. Results in Chemistry, 2021, 3, 100124.	2.0	0
5	Development of Antimicrobial Stapled Peptides Based on Magainin 2 Sequence. Molecules, 2021, 26, 444.	3.8	26
6	Helical Antimicrobial Peptide Foldamers Containing Nonâ€proteinogenic Amino Acids. ChemMedChem, 2021, 16, 1226-1233.	3.2	20
7	Structure–activity relationship study of amphipathic antimicrobial peptides using helixâ€destabilizing sarcosine. Journal of Peptide Science, 2021, 27, e3360.	1.4	6
8	Synthesis of Norgestomet and its $17\hat{l}^2$ -isomer and evaluation of their agonistic activities against progesterone receptor. Bioorganic and Medicinal Chemistry, 2021, 49, 116425.	3.0	0
9	Design, Synthesis, and Biological Activity of Conformationally Restricted Analogues of Silibinin. ACS Omega, 2020, 5, 23164-23174.	3.5	4
10	Rational Design of Helixâ€Stabilized Antimicrobial Peptide Foldamers Containing α,αâ€Disubstituted Amino Acids or Sideâ€Chain Stapling. ChemPlusChem, 2020, 85, 2731-2736.	2.8	15
11	De Novo Design of Cellâ€Penetrating Foldamers. Chemical Record, 2020, 20, 912-921.	5.8	15
12	Inhibition of β-amyloid–induced neurotoxicity by planar analogues of procyanidin B3. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2659-2663.	2.2	8
13	Development of Amphipathic Antimicrobial Peptide Foldamers Based on Magainin 2 Sequence. ChemMedChem, 2019, 14, 1911-1916.	3.2	16
14	Development of 2-aminoisobutyric acid (Aib)-rich cell-penetrating foldamers for efficient siRNA delivery. Chemical Communications, 2019, 55, 7792-7795.	4.1	22
15	Rational design of novel amphipathic antimicrobial peptides focused on the distribution of cationic amino acid residues. MedChemComm, 2019, 10, 896-900.	3.4	15
16	Design and synthesis of estrogen receptor ligands with a 4-heterocycle-4-phenylheptane skeleton. Bioorganic and Medicinal Chemistry, 2018, 26, 1638-1642.	3.0	5
17	Structural Development of Cell-Penetrating Peptides Containing Cationic Proline Derivatives. Chemical and Pharmaceutical Bulletin, 2018, 66, 575-580.	1.3	11
18	Development of a Small Hybrid Molecule That Mediates Degradation of His-Tag Fused Proteins. Journal of Medicinal Chemistry, 2018, 61, 576-582.	6.4	22

Takashi Misawa

#	Article	IF	CITATIONS
19	Structural development of non-secosteroidal vitamin D receptor (VDR) ligands without any asymmetric carbon. Bioorganic and Medicinal Chemistry, 2018, 26, 6146-6152.	3.0	0
20	Extent of Helical Induction Caused by Introducing α-Aminoisobutyric Acid into an Oligovaline Sequence. ACS Omega, 2018, 3, 6395-6399.	3.5	9
21	Development of helix-stabilized cell-penetrating peptides containing cationic α,α-disubstituted amino acids as helical promoters. Bioorganic and Medicinal Chemistry, 2017, 25, 1846-1851.	3.0	21
22	Development of an ON/OFF switchable fluorescent probe targeting His tag fused proteins in living cells. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3417-3422.	2.2	9
23	Efficient synthesis of a multi-substituted diphenylmethane skeleton as a steroid mimetic. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2590-2593.	2.2	6
24	Design and synthesis of novel selective estrogen receptor degradation inducers based on the diphenylheptane skeleton. MedChemComm, 2017, 8, 239-246.	3.4	11
25	Development of a peptide-based inducer of protein degradation targeting NOTCH1. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4985-4988.	2.2	24
26	Preorganized Cyclic α,α-Disubstituted α-Amino Acids Bearing Functionalized Side Chains That Act as Peptide-Helix Inducers. Journal of Organic Chemistry, 2017, 82, 10722-10726.	3.2	10
27	Development of helix-stabilized antimicrobial peptides composed of lysine and hydrophobic α,α-disubstituted α-amino acid residues. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3950-3953.	2.2	12
28	Simple and efficient knockdown of His-tagged proteins by ternary molecules consisting of a His-tag ligand, a ubiquitin ligase ligand, and a cell-penetrating peptide. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4478-4481.	2.2	8
29	Rational Design and Synthesis of Post-Functionalizable Peptide Foldamers as Helical Templates. Bioconjugate Chemistry, 2017, 28, 3029-3035.	3.6	7
30	Handedness Preferences of Heterochiral Helical Peptides Containing Homochiral Peptide Segments. European Journal of Organic Chemistry, 2016, 2016, 840-846.	2.4	4
31	Plasmid DNA delivery by arginine-rich cell-penetrating peptides containing unnatural amino acids. Bioorganic and Medicinal Chemistry, 2016, 24, 2681-2687.	3.0	46
32	Development of a peptide-based inducer of nuclear receptors degradation. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2655-2658.	2.2	25
33	Development of a Cell-penetrating Peptide that Exhibits Responsive Changes in its Secondary Structure in the Cellular Environment. Scientific Reports, 2016, 6, 33003.	3.3	53
34	αâ€Helical Structures of Oligopeptides with an Alternating lâ€Leuâ€Aib Segment. European Journal of Organic Chemistry, 2016, 2016, 2815-2820.	2.4	10
35	A Helixâ€Stabilized Cellâ€Penetrating Peptide as an Intracellular Delivery Tool. ChemBioChem, 2016, 17, 137-140.	2.6	55
36	Effects of alkyl side chains and terminal hydrophilicity on vitamin D receptor (VDR) agonistic activity based on the diphenylpentane skeleton. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5362-5366.	2.2	4

Takashi Misawa

#	Article	IF	CITATIONS
37	Structural development of stabilized helical peptides as inhibitors of estrogen receptor (ER)-mediated transcription. Bioorganic and Medicinal Chemistry, 2015, 23, 4132-4138.	3.0	22
38	A preorganized β-amino acid bearing a guanidinium side chain and its use in cell-penetrating peptides. Organic and Biomolecular Chemistry, 2015, 13, 5617-5620.	2.8	39
39	Synthesis of a bis-cationic α,α-disubstituted amino acid (9-amino-bispidine-9-carboxylic acid) and its effects on the conformational properties of peptides. Tetrahedron, 2015, 71, 2241-2245.	1.9	12
40	Structure–activity relationships of benzhydrol derivatives based on 1′-acetoxychavicol acetate (ACA) and their inhibitory activities on multiple myeloma cell growth via inactivation of the NF-κB pathway. Bioorganic and Medicinal Chemistry, 2015, 23, 2241-2246.	3.0	5
41	Topological Study of the Structures of Heterochiral Peptides Containing Equal Amounts of <scp>l</scp> -Leu and <scp>d</scp> -Leu. Journal of Organic Chemistry, 2015, 80, 8597-8603.	3.2	15
42	Development of Cell-Penetrating R7 Fragment-Conjugated Helical Peptides as Inhibitors of Estrogen Receptor-Mediated Transcription. Bioconjugate Chemistry, 2014, 25, 1921-1924.	3.6	28
43	Structural Development of Benzhydrol-Type 1'-Acetoxychavicol Acetate (ACA) Analogs as Human Leukemia Cell-Growth Inhibitors Based on Quantitative Structure-Activity Relationship (QSAR) Analysis. Chemical and Pharmaceutical Bulletin, 2008, 56, 1490-1495.	1.3	11