Martina Heer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/255723/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pre-flight exercise and bone metabolism predict unloading-induced bone loss due to spaceflight. British Journal of Sports Medicine, 2022, 56, 196-203.	3.1	37
2	ACCURATE ESTIMATION OF INDIVIDUAL SODIUM INTAKE WITH REPEATED SPOT URINE SAMPLING. Journal of Hypertension, 2021, 39, e325.	0.3	0
3	Antioxidant Supplementation Does Not Affect Bone Turnover Markers During 60 Days of 6° Head-Down Tilt Bed Rest: Results from an Exploratory Randomized Controlled Trial. Journal of Nutrition, 2021, 151, 1527-1538.	1.3	9
4	MO597ESTIMATING INDIVIDUAL-LEVEL SODIUM INTAKE WITH REPEATED SPOT URINE SAMPLING. Nephrology Dialysis Transplantation, 2021, 36, .	0.4	0
5	Nutrition and Human Space Flight: Evidence From 4–6 Month Missions to the International Space Station. Current Developments in Nutrition, 2021, 5, 863.	0.1	1
6	Gut Microbiome and Space Travelers' Health: State of the Art and Possible Pro/Prebiotic Strategies for Long-Term Space Missions. Frontiers in Physiology, 2020, 11, 553929.	1.3	56
7	Factors affecting flavor perception in space: Does the spacecraft environment influence food intake by astronauts?. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 3439-3475.	5.9	30
8	Natriuretic Peptide Resetting in Astronauts. Circulation, 2020, 141, 1593-1595.	1.6	14
9	Locomotion replacement exercise cannot counteract cartilage biomarker response to 5 days of immobilization in healthy adults. Journal of Orthopaedic Research, 2020, 38, 2373-2382.	1.2	8
10	Nutrition and Human Space Flight: Evidence from 4–6 Month Missions to the International Space Station. Current Developments in Nutrition, 2020, 4, nzaa055_031.	0.1	0
11	Effectiveness of Resistive Vibration Exercise and Whey Protein Supplementation Plus Alkaline Salt on the Skeletal Muscle Proteome Following 21 Days of Bed Rest in Healthy Males. Journal of Proteome Research, 2020, 19, 3438-3451.	1.8	14
12	Nutritional Countermeasures for Spaceflight-Related Stress. , 2020, , 593-616.		4
13	Preventive and Therapeutic Strategies to Counter Immune System Dysfunctioning During Spaceflight. , 2020, , 555-561.		0
14	Specific Immunologic Countermeasure Protocol for Deep-Space Exploration Missions. Frontiers in Immunology, 2019, 10, 2407.	2.2	29
15	Putative Effects of Nutritive Polyphenols on Bone Metabolism In Vivo—Evidence from Human Studies. Nutrients, 2019, 11, 871.	1.7	31
16	The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science, 2019, 364,	6.0	576
17	The negative effect of unloading exceeds the bone-sparing effect of alkaline supplementation: a bed rest study. Osteoporosis International, 2019, 30, 431-439.	1.3	2
18	A nutrient cocktail prevents lipid metabolism alterations induced by 20 days of daily steps reduction and fructose overfeeding: result from a randomized study. Journal of Applied Physiology, 2019, 126, 88-101.	1.2	24

Martina Heer

#	Article	IF	CITATIONS
19	Alkalinization with potassium bicarbonate improves glutathione status and protein kinetics in young volunteers during 21-day bed rest. Clinical Nutrition, 2019, 38, 652-659.	2.3	3
20	Metabolic Inflexibility Is an Early Marker of Bed-Rest–Induced Glucose Intolerance Even When Fat Mass Is Stable. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 1910-1920.	1.8	40
21	Sensitivity of serum concentration of cartilage biomarkers to 21â€days of bed rest. Journal of Orthopaedic Research, 2018, 36, 1465-1471.	1.2	25
22	Immune System Dysregulation During Spaceflight: Potential Countermeasures for Deep Space Exploration Missions. Frontiers in Immunology, 2018, 9, 1437.	2.2	257
23	Dietary acid load and bone turnover during long-duration spaceflight and bed rest. American Journal of Clinical Nutrition, 2018, 107, 834-844.	2.2	27
24	Abstract P379: Paradoxical Natriuretic Peptide Resetting in Astronauts. Hypertension, 2018, 72, .	1.3	0
25	Effects of high-protein intake on bone turnover in long-term bed rest in women. Applied Physiology, Nutrition and Metabolism, 2017, 42, 537-546.	0.9	16
26	Bed rest and resistive vibration exercise unveil novel links between skeletal muscle mitochondrial function and insulin resistance. Diabetologia, 2017, 60, 1491-1501.	2.9	47
27	The effect of empagliflozin on muscle sympathetic nerve activity in patients with type II diabetes mellitus. Journal of the American Society of Hypertension, 2017, 11, 604-612.	2.3	69
28	Pharmacodynamic Effects of Single and Multiple Doses of Empagliflozin in Patients With Type 2 Diabetes. Clinical Therapeutics, 2016, 38, 2265-2276.	1.1	71
29	Acute Pharmacodynamic Effects of Empagliflozin With and Without Diuretic Agents in Patients With Type 2 Diabetes Mellitus. Clinical Therapeutics, 2016, 38, 2248-2264.e5.	1.1	43
30	Caloric restriction diminishes the pressor response to static exercise. Extreme Physiology and Medicine, 2016, 5, 2.	2.5	3
31	Genotype, Bâ€vitamin status, and androgens affect spaceflightâ€induced ophthalmic changes. FASEB Journal, 2016, 30, 141-148.	0.2	52
32	Glucocorticoid activity and metabolism with NaCl-induced low-grade metabolic acidosis and oral alkalization: results of two randomized controlled trials. Endocrine, 2016, 52, 139-147.	1.1	20
33	Serum sclerostin and DKK1 in relation to exercise against bone loss in experimental bed rest. Journal of Bone and Mineral Metabolism, 2016, 34, 354-365.	1.3	38
34	Nutrition and Bone Health in Space. , 2015, , 687-705.		8
35	Nutrients other than carbohydrates: their effects on glucose homeostasis in humans. Diabetes/Metabolism Research and Reviews, 2015, 31, 14-35.	1.7	31
36	Bone metabolism and renal stone risk during International Space Station missions. Bone, 2015, 81, 712-720.	1.4	119

#	Article	IF	CITATIONS
37	Energy, Macronutrient Supply, and Effects of Spaceflight. SpringerBriefs in Space Life Sciences, 2015, , 11-19.	0.1	0
38	Fat-Soluble Vitamins. SpringerBriefs in Space Life Sciences, 2015, , 27-35.	0.1	0
39	Water-Soluble Vitamins. SpringerBriefs in Space Life Sciences, 2015, , 37-40.	0.1	0
40	Nutrition Physiology and Metabolism in Spaceflight and Analog Studies. SpringerBriefs in Space Life Sciences, 2015, , .	0.1	8
41	Lipocalin 2: A New Mechanoresponding Gene Regulating Bone Homeostasis. Journal of Bone and Mineral Research, 2015, 30, 357-368.	3.1	76
42	Caloric Restriction Decreases Orthostatic Tolerance Independently from 6° Head-Down Bedrest. PLoS ONE, 2015, 10, e0118812.	1.1	16
43	Dietary and Urinary Sulfur Can Predict Changes in Bone Metabolism During Space Flight. FASEB Journal, 2015, 29, 738.14.	0.2	0
44	How Fast Is Recovery of Impaired Glucose Tolerance after 21-Day Bed Rest (NUC Study) in Healthy Adults?. Scientific World Journal, The, 2014, 2014, 1-7.	0.8	16
45	Sexâ€specific responses of bone metabolism and renal stone risk during bed rest. Physiological Reports, 2014, 2, e12119.	0.7	17
46	A combination of whey protein and potassium bicarbonate supplements during head-down-tilt bed rest: Presentation of a multidisciplinary randomized controlled trial (MEP study). Acta Astronautica, 2014, 95, 82-91.	1.7	13
47	Men and Women in Space: Bone Loss and Kidney Stone Risk After Long-Duration Spaceflight. Journal of Bone and Mineral Research, 2014, 29, 1639-1645.	3.1	72
48	Calcium kinetics during bed rest with artificial gravity and exercise countermeasures. Osteoporosis International, 2014, 25, 2237-2244.	1.3	8
49	Fifty Years of Human Space Travel: Implications for Bone and Calcium Research. Annual Review of Nutrition, 2014, 34, 377-400.	4.3	85
50	Men and women in space: bone loss and kidney stone risk after longâ€duration space flight (257.3). FASEB Journal, 2014, 28, 257.3.	0.2	1
51	Bone metabolism and renal stone risk during bed rest for men and women (257.8). FASEB Journal, 2014, 28, 257.8.	0.2	0
52	Effects of different levels of physical inactivity on plasma visfatin in healthy normal-weight men. Applied Physiology, Nutrition and Metabolism, 2013, 38, 689-693.	0.9	7
53	The Role of Nutritional Research in the Success of Human Space Flight. Advances in Nutrition, 2013, 4, 521-523.	2.9	38
54	KHCO3 Prevents Increase in Bone Resorption with High Protein in Bed Rest (MEP Study). FASEB Journal, 2013, 27, 615.15.	0.2	0

#	Article	IF	CITATIONS
55	Vision Changes after Spaceflight Are Related to Alterations in Folate- and Vitamin B-12-Dependent One-Carbon Metabolism,. Journal of Nutrition, 2012, 142, 427-431.	1.3	96
56	Alkaline Salts to Counteract Bone Resorption and Protein Wasting Induced by High Salt Intake: Results of a Randomized Controlled Trial. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 4789-4797.	1.8	26
57	An Analysis of the "Effect of Olibra: A 12-Week Randomized Control Trial and a Review of Earlier Studies― Journal of Diabetes Science and Technology, 2012, 6, 709-711.	1.3	4
58	Bone metabolism and nutritional status during 30-day head-down-tilt bed rest. Journal of Applied Physiology, 2012, 113, 1519-1529.	1.2	54
59	Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: Evidence from biochemistry and densitometry. Journal of Bone and Mineral Research, 2012, 27, 1896-1906.	3.1	273
60	Long-Duration Space Flight and Bed Rest Effects on Testosterone and Other Steroids. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 270-278.	1.8	61
61	Space Flight Calcium: Implications for Astronaut Health, Spacecraft Operations, and Earth. Nutrients, 2012, 4, 2047-2068.	1.7	59
62	Effects of vibration training on bone metabolism: results from a short-term bed rest study. European Journal of Applied Physiology, 2012, 112, 1741-1750.	1.2	20
63	Nutritional Countermeasures for Spaceflight-Related Stress. , 2012, , 387-403.		4
64	High protein intake improves insulin sensitivity but exacerbates bone resorption in immobility. FASEB Journal, 2012, 26, 633.9.	0.2	2
65	Vision Changes after Space Flight Are Related to Alterations in Folateâ€Dependent Oneâ€Carbon Metabolism. FASEB Journal, 2012, 26, 126.3.	0.2	Ο
66	Urinary acid excretion can predict changes in bone metabolism during space flight. FASEB Journal, 2012, 26, 244.2.	0.2	0
67	Changes in intervertebral disc morphology persist 5 mo after 21-day bed rest. Journal of Applied Physiology, 2011, 111, 1304-1314.	1.2	35
68	NT-ProBNP levels, water and sodium homeostasis in healthy men: effects of 7Âdays of dry immersion. European Journal of Applied Physiology, 2011, 111, 2229-2237.	1.2	11
69	High sodium chloride intake exacerbates immobilization-induced bone resorption and protein losses. Journal of Applied Physiology, 2011, 111, 537-542.	1.2	34
70	Effects of whey protein supplements on metabolism. Current Opinion in Clinical Nutrition and Metabolic Care, 2011, 14, 569-580.	1.3	90
71	Short-term high dietary calcium intake during bedrest has no effect on markers of bone turnover in healthy men. Nutrition, 2010, 26, 522-527.	1.1	19
72	Acidic diet and bone mineral content in older men: the CHAMPâ€ s tudy. FASEB Journal, 2010, 24, 946.9.	0.2	0

#	Article	IF	CITATIONS
73	Effects of 21 days of bed rest, with or without artificial gravity, on nutritional status of humans. Journal of Applied Physiology, 2009, 107, 54-62.	1.2	36
74	Effects of artificial gravity during bed rest on bone metabolism in humans. Journal of Applied Physiology, 2009, 107, 47-53.	1.2	58
75	Vibration training intervention to maintain cartilage thickness and serum concentrations of cartilage oligometric matrix protein (COMP) during immobilization. Osteoarthritis and Cartilage, 2009, 17, 1598-1603.	0.6	67
76	20-Hz whole body vibration training fails to counteract the decrease in leg muscle volume caused by 14Âdays of 6° head down tilt bed rest. European Journal of Applied Physiology, 2009, 105, 271-277.	1.2	39
77	Increasing sodium intake from a previous low or high intake affects water, electrolyte and acid–base balance differently. British Journal of Nutrition, 2009, 101, 1286.	1.2	58
78	Low-Grade Metabolic Acidosis May Be the Cause of Sodium Chloride–Induced Exaggerated Bone Resorption. Journal of Bone and Mineral Research, 2008, 23, 517-524.	3.1	47
79	Physical inactivity decreases whole body glutamine turnover independently from changes in proteolysis. Journal of Physiology, 2008, 586, 4775-4781.	1.3	9
80	The effect of <scp>l</scp> â€arginine administration on muscle force and power in postmenopausal women. Clinical Physiology and Functional Imaging, 2008, 28, 307-311.	0.5	28
81	WISE-2005: Supine treadmill exercise within lower body negative pressure and flywheel resistive exercise as a countermeasure to bed rest-induced bone loss in women during 60-day simulated microgravity. Bone, 2008, 42, 572-581.	1.4	72
82	Whey Protein Ingestion Enhances Postprandial Anabolism during Short-Term Bed Rest in Young Men. Journal of Nutrition, 2008, 138, 2212-2216.	1.3	19
83	Calorie Restriction Modulates Inactivity-Induced Changes in the Inflammatory Markers C-Reactive Protein and Pentraxin-3. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 3226-3229.	1.8	76
84	Norepinephrine transporter inhibition alters the hemodynamic response to hypergravitation. Journal of Applied Physiology, 2008, 104, 756-760.	1.2	12
85	Sodium Regulation in the Human Body. Current Sports Medicine Reports, 2008, 7, S3-S6.	0.5	1
86	Whole-body vibration can reduce calciuria induced by high protein intakes and may counteract bone resorption: A preliminary study. Journal of Sports Sciences, 2007, 25, 111-119.	1.0	21
87	Calorie restriction accelerates the catabolism of lean body mass during 2 wk of bed rest. American Journal of Clinical Nutrition, 2007, 86, 366-372.	2.2	111
88	Sympathetic nervous activity decreases during head down bed rest but not during microgravity. Microgravity Science and Technology, 2007, 19, 95-97.	0.7	2
89	A 2-year prospective study of bone metabolism and bone mineral density in adolescents with anorexia nervosa. Journal of Neural Transmission, 2007, 114, 1611-1618.	1.4	35
90	From space to Earth: advances in human physiology from 20Âyears of bed rest studies (1986–2006). European Journal of Applied Physiology, 2007, 101, 143-194.	1.2	521

Martina Heer

#	Article	IF	CITATIONS
91	Interactions Among Artificial Gravity, The Affected Physiological Systems, and Nutrition. , 2007, , 249-270.		2
92	Contrary to ambulatory conditions, high NaClâ€intake during headâ€down bed rest leads to negative potassium balances. FASEB Journal, 2007, 21, A951.	0.2	0
93	High sodium chloride intake exacerbates immobilisation induced bone loss. FASEB Journal, 2007, 21, A355.	0.2	0
94	Space motion sickness: Incidence, etiology, and countermeasures. Autonomic Neuroscience: Basic and Clinical, 2006, 129, 77-79.	1.4	118
95	Calcium and Vitamin D: Is Supplementation an Efficient Countermeasure to Bone Loss in Immobilization?. , 2006, , .		0
96	Tyramine in the assessment of regional adrenergic function. Biochemical Pharmacology, 2006, 72, 1724-1729.	2.0	6
97	Influence of Salt Intake on Renin–Angiotensin and Natriuretic Peptide System Genes in Human Adipose Tissue. Hypertension, 2006, 48, 1103-1108.	1.3	20
98	Sympathetic nervous activity decreases during head-down bed rest but not during microgravity. Journal of Applied Physiology, 2005, 99, 1552-1557.	1.2	40
99	Immobilization induces a very rapid increase in osteoclast activity. Acta Astronautica, 2005, 57, 31-36.	1.7	23
100	Increased urinary excretion rates of serotonin and metabolites during bedrest. Acta Astronautica, 2005, 56, 801-808.	1.7	4
101	Modulation of endothelial and smooth muscle function by bed rest and hypoenergetic, low-fat nutrition. Journal of Applied Physiology, 2005, 99, 2196-2203.	1.2	29
102	Regulation of Body Fluid and Salt Homeostasis - from Observations in Space to New Concepts on Earth. Current Pharmaceutical Biotechnology, 2005, 6, 299-304.	0.9	24
103	Activation Of The Serotonergic But Not The Adrenergic System During Bed Rest Immobilization. Medicine and Science in Sports and Exercise, 2005, 37, S37.	0.2	0
104	The Anabolic And Catabolic Endocrine Systems Are Differently Affected During 14 Days Of Absolute Bed Rest In Healthy Males. Medicine and Science in Sports and Exercise, 2005, 37, S37.	0.2	0
105	Bone turnover during inpatient nutritional therapy and outpatient follow-up in patients with anorexia nervosa compared with that in healthy control subjects. American Journal of Clinical Nutrition, 2004, 80, 774-781.	2.2	58
106	Short-term bed rest impairs amino acid-induced protein anabolism in humans. Journal of Physiology, 2004, 558, 381-388.	1.3	119
107	High serum leptin levels subsequent to weight gain predict renewed weight loss in patients with anorexia nervosa. Psychoneuroendocrinology, 2004, 29, 791-797.	1.3	78
108	L-Arginine, the Natural Precursor of NO, Is Not Effective for Preventing Bone Loss in Postmenopausal Women. Journal of Bone and Mineral Research, 2004, 20, 471-479.	3.1	20

#	Article	IF	CITATIONS
109	Improvement of Nutritional Status as Assessed by Multifrequency BIA During 15 Weeks of Refeeding in Adolescent Girls with Anorexia Nervosa. Journal of Nutrition, 2004, 134, 3026-3030.	1.3	44
110	Reproductive function during weight gain in anorexia nervosa. Leptin represents a metabolic gate to gonadotropin secretion. Journal of Neural Transmission, 2003, 110, 427-435.	1.4	55
111	The effect of therapeutically induced weight gain on plasma leptin levels in patients with anorexia nervosa. Journal of Psychiatric Research, 2003, 37, 165-169.	1.5	41
112	Low Urinary Albumin Excretion in Astronauts during Space Missions. Nephron Physiology, 2003, 93, p102-p105.	1.5	18
113	Elevated Physical Activity and Low Leptin Levels Co-occur in Patients with Anorexia Nervosa. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 5169-5174.	1.8	124
114	Microgravity as a model of ageing. Current Opinion in Clinical Nutrition and Metabolic Care, 2003, 6, 31-40.	1.3	59
115	Bone resorption is induced on the second day of bed rest: results of a controlled crossover trial. Journal of Applied Physiology, 2003, 95, 977-982.	1.2	80
116	Changes in Bone Turnover in Patients with Anorexia Nervosa during Eleven Weeks of Inpatient Dietary Treatment. Clinical Chemistry, 2002, 48, 754-760.	1.5	76
117	Effects of sodium intake on cardiovascular variables in humans during posture changes and ambulatory conditions. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R1404-R1411.	0.9	23
118	Calcium and bone metabolism during space flight. Nutrition, 2002, 18, 849-852.	1.1	72
119	Nutritional interventions related to bone turnover in European space missions and simulation models. Nutrition, 2002, 18, 853-856.	1.1	42
120	Fernweh. Space Food zwischen technischer Innovation und physiologischer Notwendigkeit. , 2002, , 121-128.		0
121	Author's reply:. American Journal of Kidney Diseases, 2001, 37, 651-652.	2.1	2
122	Nitrogen Metabolism and Bone Metabolism Markers in Healthy Adults during 16 Weeks of Bed Rest. Clinical Chemistry, 2001, 47, 1688-1695.	1.5	54
123	Energy and fluid metabolism in microgravity. Current Opinion in Clinical Nutrition and Metabolic Care, 2001, 4, 307-311.	1.3	8
124	Fluid balance and kidney function in space. American Journal of Kidney Diseases, 2001, 38, 664-667.	2.1	10
125	Validity of microgravity simulation models on Earth. American Journal of Kidney Diseases, 2001, 38, 668-674.	2.1	31
126	Renal hemodynamics in space. American Journal of Kidney Diseases, 2001, 38, 675-678.	2.1	23

#	Article	IF	CITATIONS
127	Water and sodium balance in space. American Journal of Kidney Diseases, 2001, 38, 684-690.	2.1	49
128	Body mass changes, energy, and protein metabolism in space. American Journal of Kidney Diseases, 2001, 38, 691-695.	2.1	23
129	Revised hypothesis and future perspectives. American Journal of Kidney Diseases, 2001, 38, 696-698.	2.1	16
130	Microgravity inhibits intestinal calcium absorption as shown by a stable strontium test. European Journal of Clinical Investigation, 2000, 30, 1036-1043.	1.7	53
131	Water and sodium balances and their relation to body mass changes in microgravity. European Journal of Clinical Investigation, 2000, 30, 1066-1075.	1.7	67
132	Nutrient supply during recent European missions. Pflugers Archiv European Journal of Physiology, 2000, 441, R8-R14.	1.3	42
133	Body fluid regulation in µ-gravity differs from that on Earth: an overview. Pflugers Archiv European Journal of Physiology, 2000, 441, R66-R72.	1.3	41
134	Space Flight Is Associated with Rapid Decreases of Undercarboxylated Osteocalcin and Increases of Markers of Bone Resorption without Changes in Their Circadian Variation: Observations in Two Cosmonauts. Clinical Chemistry, 2000, 46, 1136-1143.	1.5	117
135	Lactose does not enhance calcium bioavailability in lactose-tolerant, healthy adults. American Journal of Clinical Nutrition, 2000, 71, 931-936.	2.2	31
136	High dietary sodium chloride consumption may not induce body fluid retention in humans. American Journal of Physiology - Renal Physiology, 2000, 278, F585-F595.	1.3	239
137	Unexpected renal responses in space. Lancet, The, 2000, 356, 1577-1578.	6.3	47
138	Biological dosimetry to determine the UV radiation climate inside the MIR station and its role in vitamin D biosynthesis. Advances in Space Research, 1998, 22, 1643-1652.	1.2	16
139	Body fluid metabolism at actual and simulated microgravity. Medicine and Science in Sports and Exercise, 1996, 28, 32-35.	0.2	14
140	Role of nutrition during long-term spaceflight. Acta Astronautica, 1995, 35, 297-311.	1.7	13
141	Renal and endocrine responses in humans to isotonic saline infusion during microgravity. Journal of Applied Physiology, 1995, 78, 2253-2259.	1.2	95
142	Antinatriuretic kidney response to weightlessness. Acta Astronautica, 1994, 33, 97-100.	1.7	6
143	Reduced natriuresis during weightlessness. The Clinical Investigator, 1993, 71, 678-86.	0.6	48
144	Long-term elevations of dietary sodium produce parallel increases in the renal excretion of urodilatin and sodium. Pflugers Archiv European Journal of Physiology, 1993, 425, 390-394.	1.3	27

#	Article	lF	CITATIONS
145	Effects of 10 days 6° head-down tilt on the responses to fluid loading and lower body negative pressure. Acta Astronautica, 1991, 23, 19-24.	1.7	0
146	Effects of saline loading during head down tilt on ANP and cyclic GMP levels and on urinary fluid excretion. Acta Astronautica, 1991, 23, 25-29.	1.7	0
147	Effects of antioxidants on bone turnover markers in 6° head-down tilt bed rest. Frontiers in Physiology, 0, 9, .	1.3	2