
Tobias Weinert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2557044/publications.pdf Version: 2024-02-01

TORIAS WEINEDT

#	Article	IF	CITATIONS
1	Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser. Science, 2018, 361, .	12.6	285
2	Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons. Nature Communications, 2017, 8, 542.	12.8	203
3	Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically. Nature, 2012, 481, 98-101.	27.8	152
4	Fast native-SAD phasing for routine macromolecular structure determination. Nature Methods, 2015, 12, 131-133.	19.0	120
5	Proton uptake mechanism in bacteriorhodopsin captured by serial synchrotron crystallography. Science, 2019, 365, 61-65.	12.6	117
6	Femtosecond-to-millisecond structural changes in a light-driven sodium pump. Nature, 2020, 583, 314-318.	27.8	115
7	CLASP Suppresses Microtubule Catastrophes through a Single TOG Domain. Developmental Cell, 2018, 46, 40-58.e8.	7.0	110
8	<i>In meso in situ</i> serial X-ray crystallography of soluble and membrane proteins at cryogenic temperatures. Acta Crystallographica Section D: Structural Biology, 2016, 72, 93-112.	2.3	91
9	Structural Basis for Allosteric Ligand Recognition in the Human CC Chemokine Receptor 7. Cell, 2019, 178, 1222-1230.e10.	28.9	81
10	Structure of the Full-length VEGFR-1 Extracellular Domain in Complex with VEGF-A. Structure, 2017, 25, 341-352.	3.3	77
11	Crystal structure of rhodopsin in complex with a mini-G _o sheds light on the principles of G protein selectivity. Science Advances, 2018, 4, eaat7052.	10.3	65
12	Structural basis of enzymatic benzene ring reduction. Nature Chemical Biology, 2015, 11, 586-591.	8.0	52
13	PRICo: a new multi-axis goniometer for macromolecular crystallography. Journal of Synchrotron Radiation, 2015, 22, 895-900.	2.4	52
14	DM9 Domain Containing Protein Functions As a Pattern Recognition Receptor with Broad Microbial Recognition Spectrum. Frontiers in Immunology, 2017, 8, 1607.	4.8	43
15	A Robust, GFP-Orthogonal Photoswitchable Inhibitor Scaffold Extends Optical Control over the Microtubule Cytoskeleton. Cell Chemical Biology, 2021, 28, 228-241.e6.	5.2	43
16	Dynamics and mechanism of a light-driven chloride pump. Science, 2022, 375, 845-851.	12.6	43
17	Data-collection strategy for challenging native SAD phasing. Acta Crystallographica Section D: Structural Biology, 2016, 72, 421-429.	2.3	42
18	Role of the nucleotidyl cyclase helical domain in catalytically active dimer formation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9821-E9828.	7.1	35

TOBIAS WEINERT

#	Article	IF	CITATIONS
19	Structure and Mechanism of the Diiron Benzoyl-Coenzyme A Epoxidase BoxB. Journal of Biological Chemistry, 2011, 286, 29241-29248.	3.4	30
20	In situ serial crystallography for rapid de novo membrane protein structure determination. Communications Biology, 2018, 1, 124.	4.4	27
21	Advances in long-wavelength native phasing at X-ray free-electron lasers. IUCrJ, 2020, 7, 965-975.	2.2	25
22	<i>In Vivo</i> Photocontrol of Microtubule Dynamics and Integrity, Migration and Mitosis, by the Potent GFP-Imaging-Compatible Photoswitchable Reagents SBTubA4P and SBTub2M. Journal of the American Chemical Society, 2022, 144, 5614-5628.	13.7	24
23	Improving High Viscosity Extrusion of Microcrystals for Time-resolved Serial Femtosecond Crystallography at X-ray Lasers. Journal of Visualized Experiments, 2019, , .	0.3	14
24	Pink-beam serial femtosecond crystallography for accurate structure-factor determination at an X-ray free-electron laser. IUCrJ, 2021, 8, 905-920.	2.2	11
25	Structural basis of the radical pair state in photolyases and cryptochromes. Chemical Communications, 2022, 58, 4889-4892.	4.1	9
26	Membrane Protein Preparation for Serial Crystallography Using High-Viscosity Injectors: Rhodopsin as an Example. Methods in Molecular Biology, 2020, 2127, 321-338.	0.9	2