
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2556812/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review of the use of nanodevices to detect single molecules. Analytical Biochemistry, 2022, 654, 114645.	2.4	7
2	Singleâ€Molecule Classification of Aspartic Acid and Leucine by Molecular Recognition through Hydrogen Bonding and Time‧eries Analysis. Chemistry - an Asian Journal, 2022, 17, .	3.3	4
3	Challenges of the practical applications of solid-state nanopore platforms for sensing biomolecules. Applied Physics Express, 2022, 15, 070101.	2.4	3
4	Dependence of Molecular Diode Behaviors on Aromaticity. Journal of Physical Chemistry Letters, 2022, 13, 6359-6366.	4.6	5
5	Sensing the Performance of Artificially Intelligent Nanopores Developed by Integrating Solid-State Nanopores with Machine Learning Methods. Journal of Physical Chemistry C, 2022, 126, 12197-12209.	3.1	10
6	Inertial focusing and zeta potential measurements of single-nanoparticles using octet-nanochannels. Lab on A Chip, 2021, 21, 3076-3085.	6.0	0
7	Dielectric Coatings for Resistive Pulse Sensing Using Solid-State Pores. ACS Applied Materials & Interfaces, 2021, 13, 10632-10638.	8.0	4
8	Development of Single-Molecule Electrical Identification Method for Cyclic Adenosine Monophosphate Signaling Pathway. Nanomaterials, 2021, 11, 784.	4.1	5
9	Length Discrimination of Homo-oligomeric Nucleic Acids with Single-molecule Measurement. Analytical Sciences, 2021, 37, 513-517.	1.6	7
10	Rapid Discrimination of Extracellular Vesicles by Shape Distribution Analysis. Analytical Chemistry, 2021, 93, 7037-7044.	6.5	15
11	Direct Observation of Distinctive Electronic States of Ferrocene Moieties in Ferrocene-Bridged Trisporphyrin on Au(111) Using Scanning Tunneling Microscopy/Spectroscopy. Langmuir, 2021, 37, 6468-6474.	3.5	3
12	Combining machine learning and nanopore construction creates an artificial intelligence nanopore for coronavirus detection. Nature Communications, 2021, 12, 3726.	12.8	80
13	Application of Micropore Device for Accurate, Easy, and Rapid Discrimination of Saccharomyces pastorianus from Dekkera spp Biosensors, 2021, 11, 272.	4.7	1
14	Diagnosing Diseases with Nanopore Devices and Machine Learning. Journal of the Institute of Electrical Engineers of Japan, 2021, 141, 512-515.	0.0	0
15	Direct Observation of Distinctive Electronic States and Mechanical Function of Ferrocene Moieties in Ferrocene-bridged Trisporphyrin Using Scanning Tunneling Microscopy/Spectroscopy. Vacuum and Surface Science, 2021, 64, 521-526.	0.1	0
16	Salt Gradient Control of Translocation Dynamics in a Solid-State Nanopore. Analytical Chemistry, 2021, 93, 16700-16708.	6.5	5
17	Chemical‣abelingâ€Assisted Detection of Nucleobase Modifications by Quantumâ€Tunnelingâ€Based Singleâ€Molecule Sensing. ChemBioChem, 2020, 21, 335-339.	2.6	3
18	Tailoring Dielectric Surface Charge via Atomic Layer Thickness. ACS Applied Materials & Interfaces, 2020, 12, 5025-5030.	8.0	5

#	Article	IF	CITATIONS
19	Analysis Method of the Ion Current–Time Waveform Obtained from Low Aspect Ratio Solid-state Nanopores. Analytical Sciences, 2020, 36, 161-175.	1.6	2
20	Dissecting Time-Evolved Conductance Behavior of Single Molecule Junctions by Nonparametric Machine Learning. Journal of Physical Chemistry Letters, 2020, 11, 6567-6572.	4.6	7
21	Single-Molecule Counting of Nucleotide by Electrophoresis with Nanochannel-Integrated Nano-Gap Devices. Micromachines, 2020, 11, 982.	2.9	9
22	Electroosmosis-Driven Nanofluidic Diodes. Journal of Physical Chemistry B, 2020, 124, 7086-7092.	2.6	12
23	Detection of an alcohol-associated cancer marker by single-molecule quantum sequencing. Chemical Communications, 2020, 56, 14299-14302.	4.1	8
24	Key aurophilic motif for robust quantum-tunneling-based characterization of a nucleoside analogue marker. Chemical Science, 2020, 11, 10135-10142.	7.4	2
25	Quasi-Stable Salt Gradient and Resistive Switching in Solid-State Nanopores. ACS Applied Materials & Interfaces, 2020, 12, 52175-52181.	8.0	12
26	Crucial Role of Out-of-Pore Resistance on Temporal Response of Ionic Current in Nanopore Sensors. ACS Sensors, 2020, 5, 1597-1603.	7.8	4
27	Time-resolved neurotransmitter detection in mouse brain tissue using an artificial intelligence-nanogap. Scientific Reports, 2020, 10, 11244.	3.3	18
28	Combination of Single-Molecule Electrical Measurements and Machine Learning for the Identification of Single Biomolecules. ACS Omega, 2020, 5, 959-964.	3.5	26
29	Thermally activated charge transport in carbon atom chains. Nanoscale, 2020, 12, 11001-11007.	5.6	1
30	Electronic and spin structures of CaMn4Ox clusters in the SO state of the oxygen evolving complex of photosystem II. Domain-based local pair natural orbital (DLPNO) coupled-cluster (CC) calculations using optimized geometries and natural orbitals (UNO) by hybrid density functional theory (HDFT) calculations. Physical Chemistry Chemical Physics, 2020, 22, 27191-27205.	2.8	5
31	Back-Side Polymer-Coated Solid-State Nanopore Sensors. ACS Omega, 2019, 4, 12561-12566.	3.5	7
32	High-Precision Single-Molecule Identification Based on Single-Molecule Information within a Noisy Matrix. Journal of Physical Chemistry C, 2019, 123, 15867-15873.	3.1	33
33	Paving the way to single-molecule chemistry through molecular electronics. Physical Chemistry Chemical Physics, 2019, 21, 9641-9650.	2.8	11
34	Highly Conductive Nucleotide Analogue Facilitates Base-Calling in Quantum-Tunneling-Based DNA Sequencing. ACS Nano, 2019, 13, 5028-5035.	14.6	22
35	Direct Analysis of Incorporation of an Anticancer Drug into DNA at Single-Molecule Resolution. Scientific Reports, 2019, 9, 3886.	3.3	19
36	Identifying Single Particles in Air Using a 3D-Integrated Solid-State Pore. ACS Sensors, 2019, 4, 748-755.	7.8	17

#	Article	IF	CITATIONS
37	Electrical Nucleotide Sensor Based on Synthetic Guanineâ€Receptorâ€Modified Electrodes. ChemistrySelect, 2018, 3, 3819-3824.	1.5	2
38	Identification of Individual Bacterial Cells through the Intermolecular Interactions with Peptide-Functionalized Solid-State Pores. Analytical Chemistry, 2018, 90, 1511-1515.	6.5	34
39	Identifying Single Viruses Using Biorecognition Solid-State Nanopores. Journal of the American Chemical Society, 2018, 140, 16834-16841.	13.7	81
40	Particle Capture in Solid-State Multipores. ACS Sensors, 2018, 3, 2693-2701.	7.8	10
41	Selective detections of single-viruses using solid-state nanopores. Scientific Reports, 2018, 8, 16305.	3.3	65
42	Temporal Response of Ionic Current Blockade in Solid-State Nanopores. ACS Applied Materials & Interfaces, 2018, 10, 34751-34757.	8.0	22
43	Measuring Single-Molecule Conductance at An Ultra-Low Molecular Concentration in Vacuum. Micromachines, 2018, 9, 282.	2.9	4
44	Quantitative analysis of DNA with single-molecule sequencing. Scientific Reports, 2018, 8, 8517.	3.3	31
45	Electrokinetic Analysis of Energy Harvest from Natural Salt Gradients in Nanochannels. Scientific Reports, 2017, 7, 13156.	3.3	31
46	Rapid structural analysis of nanomaterials in aqueous solutions. Nanotechnology, 2017, 28, 155501.	2.6	26
47	Discriminating single-bacterial shape using low-aspect-ratio pores. Scientific Reports, 2017, 7, 17371.	3.3	58
48	Detecting Single-Nucleotides by Tunneling Current Measurements at Sub-MHz Temporal Resolution. Sensors, 2017, 17, 885.	3.8	8
49	Salt-Gradient Approach for Regulating Capture-to-Translocation Dynamics of DNA with Nanochannel Sensors. ACS Sensors, 2016, 1, 807-816.	7.8	26
50	Particle Trajectory-Dependent Ionic Current Blockade in Low-Aspect-Ratio Pores. ACS Nano, 2016, 10, 803-809.	14.6	69
51	Decoding DNA, RNA and peptides with quantum tunnelling. Nature Nanotechnology, 2016, 11, 117-126.	31.5	183
52	High thermopower of mechanically stretched single-molecule junctions. Scientific Reports, 2015, 5, 11519.	3.3	45
53	Discrimination of equi-sized nanoparticles by surface charge state using low-aspect-ratio pore sensors. Applied Physics Letters, 2014, 104, .	3.3	14
54	Thermoelectric voltage measurements of atomic and molecular wires using microheater-embedded mechanically-controllable break junctions. Nanoscale, 2014, 6, 8235-8241.	5.6	33

#	Article	IF	CITATIONS
55	Electrode-embedded nanopores for label-free single-molecule sequencing by electric currents. RSC Advances, 2014, 4, 15886-15899.	3.6	40
56	Detection of post-translational modifications in single peptides using electron tunnelling currents. Nature Nanotechnology, 2014, 9, 835-840.	31.5	122
57	Mechanism of How Salt-Gradient-Induced Charges Affect the Translocation of DNA Molecules through a Nanopore. Biophysical Journal, 2013, 105, 776-782.	0.5	45
58	Trapping and identifying single-nanoparticles using a low-aspect-ratio nanopore. Applied Physics Letters, 2013, 103, 013108.	3.3	28
59	Thermoelectricity in atom-sized junctions at room temperatures. Scientific Reports, 2013, 3, 3326.	3.3	42
60	DNA capture in nanopores for genome sequencing: challenges and opportunities. Journal of Materials Chemistry, 2012, 22, 13423.	6.7	21
61	Single-Molecule Electrical Random Resequencing of DNA and RNA. Scientific Reports, 2012, 2, 501.	3.3	131
62	Single Molecule Electronics and Devices. Sensors, 2012, 12, 7259-7298.	3.8	122
63	Single-Nanoparticle Detection Using a Low-Aspect-Ratio Pore. ACS Nano, 2012, 6, 3499-3505.	14.6	90
64	Electrical Detection of Single Methylcytosines in a DNA Oligomer. Journal of the American Chemical Society, 2011, 133, 9124-9128.	13.7	76
65	Controlling DNA Translocation through Gate Modulation of Nanopore Wall Surface Charges. ACS Nano, 2011, 5, 5509-5518.	14.6	208
66	Gate Manipulation of DNA Capture into Nanopores. ACS Nano, 2011, 5, 8391-8397.	14.6	104
67	Dependence of Single-Molecule Conductance on Molecule Junction Symmetry. Journal of the American Chemical Society, 2011, 133, 11426-11429.	13.7	89
68	Identifying single nucleotides by tunnelling current. Nature Nanotechnology, 2010, 5, 286-290.	31.5	367
69	Single-molecule identification via electric current noise. Nature Communications, 2010, 1, 138.	12.8	55
70	Mechanically-controllable single molecule switch based on configuration specific electrical conductivity of metal–molecule–metal junctions. Chemical Science, 2010, 1, 247.	7.4	36
71	Moleculeâ^ Electrode Bonding Design for High Single-Molecule Conductance. Journal of the American Chemical Society, 2010, 132, 17364-17365.	13.7	25
72	Identifying molecular signatures in metal-molecule-metal junctions. Nanoscale, 2009, 1, 164.	5.6	37

#	Article	IF	CITATIONS
73	Inelastic electron tunneling spectroscopy of single-molecule junctions using a mechanically controllable break junction. Nanotechnology, 2009, 20, 434008.	2.6	49
74	Quantitative Evaluation of Metalâ^'Molecule Contact Stability at the Single-Molecule Level. Journal of the American Chemical Society, 2009, 131, 10552-10556.	13.7	52
75	Atomistic Mechanics and Formation Mechanism of Metalâ^'Moleculeâ^'Metal Junctions. Nano Letters, 2009, 9, 2433-2439.	9.1	47
76	Formation and Self-Breaking Mechanism of Stable Atom-Sized Junctions. Nano Letters, 2008, 8, 345-349.	9.1	136
77	Local Heating in Metalâ ``Moleculeâ ``Metal Junctions. Nano Letters, 2008, 8, 3293-3297.	9.1	95
78	Fabrication of 0.5 nm electrode gaps using self-breaking technique. Applied Physics Letters, 2008, 93, 163115.	3.3	32
79	Experimental Analyses of Linear-type Aerospike Nozzles with Sidewalls. , 0, , .		0