
Pablo Marchant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2556787/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): BINARIES, PULSATIONS, AND EXPLOSIONS. Astrophysical Journal, Supplement Series, 2015, 220, 15.	3.0	1,990
2	Modules for Experiments in Stellar Astrophysics (\${mathtt{M}}{mathtt{E}}{mathtt{S}}{mathtt{A}}\$): Convective Boundaries, Element Diffusion, and Massive Star Explosions. Astrophysical Journal, Supplement Series, 2018, 234, 34.	3.0	1,182
3	Modules for Experiments in Stellar Astrophysics (MESA): Pulsating Variable Stars, Rotation, Convective Boundaries, and Energy Conservation. Astrophysical Journal, Supplement Series, 2019, 243, 10.	3.0	860
4	A new route towards merging massive black holes. Astronomy and Astrophysics, 2016, 588, A50.	2.1	405
5	Mind the Gap: The Location of the Lower Edge of the Pair-instability Supernova Black Hole Mass Gap. Astrophysical Journal, 2019, 887, 53.	1.6	209
6	One Channel to Rule Them All? Constraining the Origins of Binary Black Holes Using Multiple Formation Pathways. Astrophysical Journal, 2021, 910, 152.	1.6	177
7	Pulsational Pair-instability Supernovae in Very Close Binaries. Astrophysical Journal, 2019, 882, 36.	1.6	141
8	Models of low-mass helium white dwarfs including gravitational settling, thermal and chemical diffusion, and rotational mixing. Astronomy and Astrophysics, 2016, 595, A35.	2.1	141
9	Stability of magnetic fields in non-barotropic stars: an analytic treatment. Monthly Notices of the Royal Astronomical Society, 2013, 433, 2445-2466.	1.6	111
10	Common-envelope ejection in massive binary stars. Astronomy and Astrophysics, 2016, 596, A58.	2.1	92
11	On the Origin of Black Hole Spin in High-mass X-Ray Binaries. Astrophysical Journal Letters, 2019, 870, L18.	3.0	92
12	The impact of mass-transfer physics on the observable properties of field binary black hole populations. Astronomy and Astrophysics, 2021, 647, A153.	2.1	86
13	The role of mass transfer and common envelope evolution in the formation of merging binary black holes. Astronomy and Astrophysics, 2021, 650, A107.	2.1	80
14	TIDALLY DRIVEN ROCHE-LOBE OVERFLOW OF HOT JUPITERS WITH MESA. Astrophysical Journal, 2015, 813, 101.	1.6	78
15	The "hidden―companion in LB-1 unveiled by spectral disentangling. Astronomy and Astrophysics, 2020, 639, L6.	2.1	76
16	Ultra-luminous X-ray sources and neutron-star–black-hole mergers from very massive close binaries at low metallicity. Astronomy and Astrophysics, 2017, 604, A55.	2.1	69
17	Cosmic rates of black hole mergers and pair-instability supernovae from chemically homogeneous binary evolution. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5941-5959.	1.6	65
18	Is HR 6819 a triple system containing a black hole?. Astronomy and Astrophysics, 2020, 641, A43.	2.1	65

PABLO MARCHANT

#	Article	IF	CITATIONS
19	Properties of OB starâ^'black hole systems derived from detailed binary evolution models. Astronomy and Astrophysics, 2020, 638, A39.	2.1	65
20	Sensitivity of the lower edge of the pair-instability black hole mass gap to the treatment of time-dependent convection. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4333-4341.	1.6	60
21	The impact of stellar rotation on the black hole mass-gap from pair-instability supernovae. Astronomy and Astrophysics, 2020, 640, L18.	2.1	59
22	A New Model of Roche Lobe Overflow for Short-period Gaseous Planets and Binary Stars. Astrophysical Journal, 2017, 835, 145.	1.6	57
23	On the signature of a 70-solar-mass black hole in LB-1. Nature, 2020, 580, E11-E15.	13.7	51
24	Predictions for the hydrogen-free ejecta of pulsational pair-instability supernovae. Astronomy and Astrophysics, 2020, 640, A56.	2.1	51
25	Testing eccentricity pumping mechanisms to model eccentric long-period sdB binaries with MESA. Astronomy and Astrophysics, 2015, 579, A49.	2.1	45
26	Binary Black Hole Formation with Detailed Modeling: Stable Mass Transfer Leads to Lower Merger Rates. Astrophysical Journal, 2021, 922, 110.	1.6	45
27	Progenitors of Type IIb Supernovae. I. Evolutionary Pathways and Rates. Astrophysical Journal, 2019, 885, 130.	1.6	42
28	Effects of Close Binary Evolution on the Main-sequence Morphology of Young Star Clusters. Astrophysical Journal Letters, 2020, 888, L12.	3.0	41
29	AM CANUM VENATICORUM PROGENITORS WITH HELIUM STAR DONORS AND THE RESULTANT EXPLOSIONS. Astrophysical Journal, 2015, 807, 74.	1.6	38
30	Chemically homogeneous evolution: a rapid population synthesis approach. Monthly Notices of the Royal Astronomical Society, 2021, 505, 663-676.	1.6	33
31	An X-ray-quiet black hole born with a negligible kick in a massive binary within the Large Magellanic Cloud. Nature Astronomy, 2022, 6, 1085-1092.	4.2	33
32	Detailed models of interacting short-period massive binary stars. Astronomy and Astrophysics, 2022, 659, A98.	2.1	31
33	Stellar mergers as the origin of the blue main-sequence band in young star clusters. Nature Astronomy, 2022, 6, 480-487.	4.2	25
34	STABILITY OF HALL EQUILIBRIA IN NEUTRON STAR CRUSTS. Astrophysical Journal, 2014, 796, 94.	1.6	24
35	Revisiting the Flowers-Ruderman instability of magnetic stars. Monthly Notices of the Royal Astronomical Society, 2011, 415, 2426-2438.	1.6	22
36	SN 2016coi (ASASSN-16fp): An Energetic H-stripped Core-collapse Supernova from a Massive Stellar Progenitor with Large Mass Loss. Astrophysical Journal, 2019, 883, 147.	1.6	22

PABLO MARCHANT

#	ARTICLE	IF	CITATIONS
37	Uncovering astrometric black hole binaries with massive main-sequence companions with <i>Gaia</i> . Astronomy and Astrophysics, 2022, 658, A129.	2.1	22
38	Detailed evolutionary models of massive contact binaries – I. Model grids and synthetic populations for the Magellanic Clouds. Monthly Notices of the Royal Astronomical Society, 2021, 507, 5013-5033.	1.6	21
39	Constraining the overcontact phase in massive binary evolution. I. Mixing in V382 Cyg, VFTS 352, and OGLE SMC-SC10 108086. Astronomy and Astrophysics, 0, , .	2.1	18
40	Probing the progenitors of spinning binary black-hole mergers with long gamma-ray bursts. Astronomy and Astrophysics, 2022, 657, L8.	2.1	18
41	Dynamically inflated wind models of classical Wolf-Rayet stars. Astronomy and Astrophysics, 2021, 647, A151.	2.1	17
42	Asteroseismic test of rotational mixing in low-mass white dwarfs. Astronomy and Astrophysics, 2016, 595, L12.	2.1	17
43	The Tarantula Massive Binary Monitoring. Astronomy and Astrophysics, 2021, 650, A147.	2.1	15
44	Constraints on the Progenitor System of SN 2016gkg from a Comprehensive Statistical Analysis. Astrophysical Journal Letters, 2018, 852, L17.	3.0	13
45	Progenitors of Type IIb Supernovae. II. Observable Properties. Astrophysical Journal, 2020, 903, 70.	1.6	11
46	Resolving the dynamical mass tension of the massive binary 9 Sagittarii. Astronomy and Astrophysics, 2021, 651, A119.	2.1	8
47	Modeling overcontact binaries. Astronomy and Astrophysics, 2022, 661, A123.	2.1	8
48	Eclipses of continuous gravitational waves as a probe of stellar structure. Physical Review D, 2020, 101, .	1.6	7
49	BAT99 126: A multiple Wolf-Rayet system in the Large Magellanic Cloud with a massive near-contact binary. Astronomy and Astrophysics, 2021, 646, A33.	2.1	7
50	Luminous supernovae associated with ultra-long gamma-ray bursts from hydrogen-free progenitors extended by pulsational pair-instability. Astronomy and Astrophysics, 2020, 641, L10.	2.1	4
51	Magnetohydrodynamic equilibria in barotropic stars. Proceedings of the International Astronomical Union, 2013, 9, 419-422.	0.0	1
52	The black hole spin in coalescing binary black holes and high-mass X-ray binaries. Proceedings of the International Astronomical Union, 2018, 14, 426-432.	0.0	0
53	Formation of the SMC WO+O binary AB8. Proceedings of the International Astronomical Union, 2018, 14, 78-82.	0.0	0