## William P Schiemann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2556519/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Telomerase in Cancer: Function, Regulation, and Clinical Translation. Cancers, 2022, 14, 808.                                                                                                             | 3.7  | 30        |
| 2  | Preclinical Development of the Class-l–Selective Histone Deacetylase Inhibitor OKI-179 for the Treatment of Solid Tumors. Molecular Cancer Therapeutics, 2022, 21, 397-406.                               | 4.1  | 8         |
| 3  | The role of RNA processing and regulation in metastatic dormancy. Seminars in Cancer Biology, 2021, ,                                                                                                     | 9.6  | 5         |
| 4  | SLX4IP promotes RAP1 SUMOylation by PIAS1 to coordinate telomere maintenance through NF-κB and Notch signaling. Science Signaling, 2021, 14, .                                                            | 3.6  | 17        |
| 5  | lncRNA BORG:TRIM28 Complexes Drive Metastatic Progression by Inducing α6 Integrin/CD49f Expression in Breast Cancer Stem Cells. Molecular Cancer Research, 2021, 19, 2068-2080.                           | 3.4  | 9         |
| 6  | Epigenetic plasticity in metastatic dormancy: mechanisms and therapeutic implications. Annals of Translational Medicine, 2020, 8, 903-903.                                                                | 1.7  | 10        |
| 7  | Epithelial–Mesenchymal Transition Programs and Cancer Stem Cell Phenotypes: Mediators of Breast<br>Cancer Therapy Resistance. Molecular Cancer Research, 2020, 18, 1257-1270.                             | 3.4  | 86        |
| 8  | SLX4IP and telomere dynamics dictate breast cancer metastasis and therapeutic responsiveness. Life Science Alliance, 2020, 3, e201900427.                                                                 | 2.8  | 17        |
| 9  | Introduction to this special issue "Breast Cancer Metastasis― Journal of Cancer Metastasis and<br>Treatment, 2020, 2020, .                                                                                | 0.8  | 1         |
| 10 | Autophagy inhibition elicits emergence from metastatic dormancy by inducing and stabilizing Pfkfb3 expression. Nature Communications, 2019, 10, 3668.                                                     | 12.8 | 103       |
| 11 | Effective treatment of cancer metastasis using a dual-ligand nanoparticle. PLoS ONE, 2019, 14, e0220474.                                                                                                  | 2.5  | 21        |
| 12 | Autophagy in breast cancer metastatic dormancy: tumor suppressing or tumor promoting functions?.<br>Journal of Cancer Metastasis and Treatment, 2019, 2019, .                                             | 0.8  | 24        |
| 13 | Stem cells, immortality, and the evolution of metastatic properties in breast cancer: telomere maintenance mechanisms and metastatic evolution. Journal of Cancer Metastasis and Treatment, 2019, 2019, . | 0.8  | 10        |
| 14 | A non-natural nucleotide uses a specific pocket to selectively inhibit telomerase activity. PLoS<br>Biology, 2019, 17, e3000204.                                                                          | 5.6  | 15        |
| 15 | Systemic Delivery of Tumor-Targeting siRNA Nanoparticles against an Oncogenic LncRNA Facilitates<br>Effective Triple-Negative Breast Cancer Therapy. Bioconjugate Chemistry, 2019, 30, 907-919.           | 3.6  | 121       |
| 16 | The lncRNA BORG facilitates the survival and chemoresistance of triple-negative breast cancers.<br>Oncogene, 2019, 38, 2020-2041.                                                                         | 5.9  | 70        |
| 17 | The IncRNA BORG: a novel inducer of TNBC metastasis, chemoresistance, and disease recurrence.<br>Journal of Cancer Metastasis and Treatment, 2019, 2019, .                                                | 0.8  | 9         |
| 18 | Role of Platinum in Early-Stage Triple-Negative Breast Cancer. Current Treatment Options in Oncology, 2017, 18, 68.                                                                                       | 3.0  | 14        |

WILLIAM P SCHIEMANN

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Kindlin-2 Regulates the Growth of Breast Cancer Tumors by Activating CSF-1–Mediated Macrophage<br>Infiltration. Cancer Research, 2017, 77, 5129-5141.                                                             | 0.9 | 52        |
| 20 | Mutant p53 dictates the oncogenic activity of c-Abl in triple-negative breast cancers. Cell Death and Disease, 2017, 8, e2899-e2899.                                                                              | 6.3 | 16        |
| 21 | The propensity for epithelial-mesenchymal transitions is dictated by chromatin states in the cancer cell of origin. Stem Cell Investigation, 2017, 4, 44-44.                                                      | 3.0 | 1         |
| 22 | The IncRNA BORG Drives Breast Cancer Metastasis and Disease Recurrence. Scientific Reports, 2017, 7, 12698.                                                                                                       | 3.3 | 73        |
| 23 | The WAVE3-YB1 interaction regulates cancer stem cells activity in breast cancer. Oncotarget, 2017, 8, 104072-104089.                                                                                              | 1.8 | 25        |
| 24 | TGF-β stimulation of EMT programs elicits non-genomic ER-α activity and anti-estrogen resistance in breast cancer cells. Journal of Cancer Metastasis and Treatment, 2017, 3, 150.                                | 0.8 | 43        |
| 25 | Neoadjuvant therapy for early-stage breast cancer: the clinical utility of pertuzumab. Cancer<br>Management and Research, 2016, 8, 21.                                                                            | 1.9 | 9         |
| 26 | Transforming Growth Factor-β Is an Upstream Regulator of Mammalian Target of Rapamycin Complex<br>2–Dependent Bladder Cancer Cell Migration and Invasion. American Journal of Pathology, 2016, 186,<br>1351-1360. | 3.8 | 33        |
| 27 | Means to the ends: The role of telomeres and telomere processing machinery in metastasis. Biochimica<br>Et Biophysica Acta: Reviews on Cancer, 2016, 1866, 320-329.                                               | 7.4 | 17        |
| 28 | c-Abl inhibits breast cancer tumorigenesis through reactivation of p53-mediated p21 expression.<br>Oncotarget, 2016, 7, 72777-72794.                                                                              | 1.8 | 17        |
| 29 | Harnessing protein kinase A activation to induce mesenchymal-epithelial programs to eliminate chemoresistant, tumor-initiating breast cancer cells. Translational Cancer Research, 2016, 5, S226-S232.            | 1.0 | 5         |
| 30 | Detection of Lysyl Oxidase-Like 2 (LOXL2), a Biomarker of Metastasis from Breast Cancers Using Human<br>Blood Samples. Recent Patents on Biomarkers, 2016, 5, 93-100.                                             | 0.2 | 14        |
| 31 | Tipping the balance between good and evil: aberrant 14-3-3ζ expression drives oncogenic TGF-β signaling<br>in metastatic breast cancers. Breast Cancer Research, 2015, 17, 92.                                    | 5.0 | 3         |
| 32 | Deptor Enhances Triple-Negative Breast Cancer Metastasis and Chemoresistance through Coupling to Survivin Expression. Neoplasia, 2015, 17, 317-328.                                                               | 5.3 | 58        |
| 33 | Silencing β3 Integrin by Targeted ECO/siRNA Nanoparticles Inhibits EMT and Metastasis of Triple-Negative<br>Breast Cancer. Cancer Research, 2015, 75, 2316-2325.                                                  | 0.9 | 135       |
| 34 | Non-muscle myosin IIB is critical for nuclear translocation during 3D invasion. Journal of Cell<br>Biology, 2015, 210, 583-594.                                                                                   | 5.2 | 116       |
| 35 | ECO/siRNA nanoparticles and breast cancer metastasis. Oncoscience, 2015, 2, 823-824.                                                                                                                              | 2.2 | 0         |
| 36 | STAT3 and epithelial–mesenchymal transitions in carcinomas. Jak-stat, 2014, 3, e28975.                                                                                                                            | 2.2 | 151       |

WILLIAM P SCHIEMANN

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Therapeutic opportunities for targeting microRNAs in cancer. Molecular and Cellular Therapies, 2014, 2, 30.                                                                              | 0.2 | 36        |
| 38 | Loss of WAVE3 sensitizes triple-negative breast cancers to chemotherapeutics by inhibiting the STAT-HIF-1α-mediated angiogenesis. Jak-stat, 2014, 3, e1009276.                           | 2.2 | 16        |
| 39 | Chemotherapeutic targeting of the TGF-β pathway in breast cancers. Breast Cancer Management, 2014, 3, 73-85.                                                                             | 0.2 | 6         |
| 40 | WAVE3-NFήB Interplay Is Essential for the Survival and Invasion of Cancer Cells. PLoS ONE, 2014, 9, e110627.                                                                             | 2.5 | 22        |
| 41 | Upregulated WAVE3 expression is essential for TGF-β-mediated EMT and metastasis of triple-negative breast cancer cells. Breast Cancer Research and Treatment, 2013, 142, 341-353.        | 2.5 | 54        |
| 42 | Sox4, EMT programs, and the metastatic progression of breast cancers: mastering the masters of EMT.<br>Breast Cancer Research, 2013, 15, R72.                                            | 5.0 | 52        |
| 43 | Epithelial to Mesenchymal Transition Promotes Breast Cancer Progression via a<br>Fibronectin-dependent STAT3 Signaling Pathway. Journal of Biological Chemistry, 2013, 288, 17954-17967. | 3.4 | 118       |
| 44 | The relevance of the TGF-Î <sup>2</sup> Paradox to EMT-MET programs. Cancer Letters, 2013, 341, 30-40.                                                                                   | 7.2 | 174       |
| 45 | Targeted inactivation of β1 integrin induces β3 integrin switching, which drives breast cancer metastasis<br>by TGF-β. Molecular Biology of the Cell, 2013, 24, 3449-3459.               | 2.1 | 84        |
| 46 | TGF-Î <sup>2</sup> upregulates miR-181a expression to promote breast cancer metastasis. Journal of Clinical Investigation, 2013, 123, 150-163.                                           | 8.2 | 264       |
| 47 | The Multifunctional Roles of TGF- $\hat{l}^2$ in Navigating the Metastatic Cascade. , 2013, , 169-187.                                                                                   |     | 0         |
| 48 | Deconstructing the mechanisms and consequences of TGF-Î <sup>2</sup> -induced EMT during cancer progression.<br>Cell and Tissue Research, 2012, 347, 85-101.                             | 2.9 | 202       |
| 49 | Lysyl Oxidase Contributes to Mechanotransduction-Mediated Regulation of Transforming Growth Factor-l <sup>2</sup> Signaling in Breast Cancer Cells. Neoplasia, 2011, 13, 406-IN2.        | 5.3 | 85        |
| 50 | Role of TGF-Î <sup>2</sup> and the Tumor Microenvironment During Mammary Tumorigenesis. Gene Expression, 2011, 15, 117-132.                                                              | 1.2 | 81        |
| 51 | Transforming growth factor- $\hat{l}^2$ and the hallmarks of cancer. Cellular Signalling, 2011, 23, 951-962.                                                                             | 3.6 | 218       |
| 52 | Noncanonical TGF-β Signaling During Mammary Tumorigenesis. Journal of Mammary Gland Biology and<br>Neoplasia, 2011, 16, 127-146.                                                         | 2.7 | 103       |
| 53 | Down-regulation of epithelial cadherin is required to initiate metastatic outgrowth of breast cancer.<br>Molecular Biology of the Cell, 2011, 22, 2423-2435.                             | 2.1 | 162       |
| 54 | β3 Integrin–EGF receptor cross-talk activates p190RhoGAP in mouse mammary gland epithelial cells.<br>Molecular Biology of the Cell, 2011, 22, 4288-4301.                                 | 2.1 | 34        |

WILLIAM P SCHIEMANN

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Homeoprotein Six1 Increases TGF-β Type I Receptor and Converts TGF-β Signaling from Suppressive to<br>Supportive for Tumor Growth. Cancer Research, 2010, 70, 10371-10380.                                                                     | 0.9 | 101       |
| 56 | The Pathophysiology of Epithelial-Mesenchymal Transition Induced by Transforming Growth Factor-β in<br>Normal and Malignant Mammary Epithelial Cells. Journal of Mammary Gland Biology and Neoplasia,<br>2010, 15, 169-190.                    | 2.7 | 202       |
| 57 | PGE2 receptor EP2 mediates the antagonistic effect of COXâ€⊋ on TGFâ€Î² signaling during mammary tumorigenesis. FASEB Journal, 2010, 24, 1105-1116.                                                                                            | 0.5 | 62        |
| 58 | p130Cas Is Required for Mammary Tumor Growth and Transforming Growth Factor-β-mediated<br>Metastasis through Regulation of Smad2/3 Activity. Journal of Biological Chemistry, 2009, 284,<br>34145-34156.                                       | 3.4 | 62        |
| 59 | Mechanisms of the epithelial–mesenchymal transition by TGF-β. Future Oncology, 2009, 5, 1145-1168.                                                                                                                                             | 2.4 | 290       |
| 60 | X-linked Inhibitor of Apoptosis Protein and Its E3 Ligase Activity Promote Transforming Growth<br>Factor-Β-mediated Nuclear Factor-κB Activation during Breast Cancer Progression. Journal of Biological<br>Chemistry, 2009, 284, 21209-21217. | 3.4 | 46        |
| 61 | Activated Abl kinase inhibits oncogenic transforming growth factorâ€Î² signaling and tumorigenesis in mammary tumors. FASEB Journal, 2009, 23, 4231-4243.                                                                                      | 0.5 | 56        |
| 62 | The TGF-β paradox in human cancer: an update. Future Oncology, 2009, 5, 259-271.                                                                                                                                                               | 2.4 | 187       |
| 63 | Therapeutic targeting of the focal adhesion complex prevents oncogenic TGF-β signaling and metastasis. Breast Cancer Research, 2009, 11, R68.                                                                                                  | 5.0 | 143       |
| 64 | The Six1 homeoprotein induces human mammary carcinoma cells to undergo epithelial-mesenchymal transition and metastasis in mice through increasing TGF-β signaling. Journal of Clinical Investigation, 2009, 119, 2678-2690.                   | 8.2 | 209       |
| 65 | Grb2 binding to Tyr284 in TβR-II is essential for mammary tumor growth and metastasis stimulated by TGF-β. Carcinogenesis, 2008, 29, 244-251.                                                                                                  | 2.8 | 74        |
| 66 | Fibulin-5 initiates epithelial-mesenchymal transition (EMT) and enhances EMT induced by TGF-Â in<br>mammary epithelial cells via a MMP-dependent mechanism. Carcinogenesis, 2008, 29, 2243-2251.                                               | 2.8 | 132       |
| 67 | Cox-2 inactivates Smad signaling and enhances EMT stimulated by TGF-Â through a PGE2-dependent mechanisms. Carcinogenesis, 2008, 29, 2227-2235.                                                                                                | 2.8 | 153       |
| 68 | Altered TAB1:lκB Kinase Interaction Promotes Transforming Growth Factor β–Mediated Nuclear Factor-κB<br>Activation during Breast Cancer Progression. Cancer Research, 2008, 68, 1462-1470.                                                     | 0.9 | 81        |
| 69 | Src Phosphorylates Tyr284 in TGF-β Type II Receptor and Regulates TGF-β Stimulation of p38 MAPK during<br>Breast Cancer Cell Proliferation and Invasion. Cancer Research, 2007, 67, 3752-3758.                                                 | 0.9 | 223       |
| 70 | Targeted TGF-β chemotherapies: friend or foe in treating human malignancies?. Expert Review of Anticancer Therapy, 2007, 7, 609-611.                                                                                                           | 2.4 | 23        |
| 71 | β3Integrin and Src facilitate transforming growth factor-β mediated induction of<br>epithelial-mesenchymal transition in mammary epithelial cells. Breast Cancer Research, 2006, 8, R42.                                                       | 5.0 | 216       |
| 72 | Role of transforming growth factor- $\hat{l}^2$ in cancer progression. Future Oncology, 2006, 2, 743-763.                                                                                                                                      | 2.4 | 81        |

| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Transforming growth factor-β (TGF-β)-resistant B cells from chronic lymphocytic leukemia patients<br>contain recurrent mutations in the signal sequence of the type I TGF-β receptor. Cancer Detection and<br>Prevention, 2004, 28, 57-64. | 2.1  | 29        |
| 74 | Cloning of a novel signaling molecule, AMSH-2, that potentiates transforming growth factor beta signaling. BMC Cell Biology, 2004, 5, 2.                                                                                                   | 3.0  | 37        |
| 75 | Cystatin C Antagonizes Transforming Growth Factor Î <sup>2</sup> Signaling in Normal and Cancer Cells.<br>Molecular Cancer Research, 2004, 2, 183-195.                                                                                     | 3.4  | 113       |
| 76 | Context-specific Effects of Fibulin-5 (DANCE/EVEC) on Cell Proliferation, Motility, and Invasion.<br>Journal of Biological Chemistry, 2002, 277, 27367-27377.                                                                              | 3.4  | 141       |
| 77 | TGF-β-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nature Cell Biology, 2001, 3, 708-714.                                                                                                    | 10.3 | 332       |
| 78 | Role of Transforming Growth Factor β in Human Disease. New England Journal of Medicine, 2000, 342,<br>1350-1358.                                                                                                                           | 27.0 | 2,264     |
| 79 | A Deletion in the Gene for Transforming Growth Factor β Type I Receptor Abolishes Growth Regulation by Transforming Growth Factor β in a Cutaneous T-Cell Lymphoma. Blood, 1999, 94, 2854-2861.                                            | 1.4  | 123       |