Brian C O'meara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2556200/publications.pdf

Version: 2024-02-01

58 papers

7,334 citations

147566 31 h-index 57 g-index

75 all docs

75 docs citations

75 times ranked 10193 citing authors

#	Article	IF	CITATIONS
1	Three keys to the radiation of angiosperms into freezing environments. Nature, 2014, 506, 89-92.	13.7	1,284
2	treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics, 2012, 28, 2689-2690.	1.8	558
3	MODELING STABILIZING SELECTION: EXPANDING THE ORNSTEIN-UHLENBECK MODEL OF ADAPTIVE EVOLUTION. Evolution; International Journal of Organic Evolution, 2012, 66, 2369-2383.	1.1	537
4	TESTING FOR DIFFERENT RATES OF CONTINUOUS TRAIT EVOLUTION USING LIKELIHOOD. Evolution; International Journal of Organic Evolution, 2006, 60, 922-933.	1.1	516
5	Detecting Hidden Diversification Shifts in Models of Trait-Dependent Speciation and Extinction. Systematic Biology, 2016, 65, 583-601.	2.7	447
6	The iPlant Collaborative: Cyberinfrastructure for Plant Biology. Frontiers in Plant Science, 2011, 2, 34.	1.7	396
7	Identifying Hidden Rate Changes in the Evolution of a Binary Morphological Character: The Evolution of Plant Habit in Campanulid Angiosperms. Systematic Biology, 2013, 62, 725-737.	2.7	306
8	New Heuristic Methods for Joint Species Delimitation and Species Tree Inference. Systematic Biology, 2010, 59, 59-73.	2.7	241
9	Prospects for Building the Tree of Life from Large Sequence Databases. Science, 2004, 306, 1172-1174.	6.0	233
10	Evolutionary Inferences from Phylogenies: A Review of Methods. Annual Review of Ecology, Evolution, and Systematics, 2012, 43, 267-285.	3.8	200
11	TESTING FOR DIFFERENT RATES OF CONTINUOUS TRAIT EVOLUTION USING LIKELIHOOD. Evolution; International Journal of Organic Evolution, 2006, 60, 922.	1.1	183
12	Five Drosophila Genomes Reveal Nonneutral Evolution and the Signature of Host Specialization in the Chemoreceptor Superfamily. Genetics, 2007, 177, 1395-1416.	1.2	179
13	The evolution of a tropical biodiversity hotspot. Science, 2020, 370, 1343-1348.	6.0	179
14	Testing for different rates of continuous trait evolution using likelihood. Evolution; International Journal of Organic Evolution, 2006, 60, 922-33.	1.1	153
15	The ecological and genomic basis of explosive adaptive radiation. Nature, 2020, 586, 75-79.	13.7	146
16	Hidden state models improve state-dependent diversification approaches, including biogeographical models. Evolution; International Journal of Organic Evolution, 2018, 72, 2308-2324.	1.1	145
17	PISCIVORY LIMITS DIVERSIFICATION OF FEEDING MORPHOLOGY IN CENTRARCHID FISHES. Evolution; International Journal of Organic Evolution, 2009, 63, 1557-1573.	1.1	139
18	Species Delimitation with Gene Flow. Systematic Biology, 2017, 66, syw117.	2.7	118

#	Article	IF	Citations
19	Functional distinctiveness of major plant lineages. Journal of Ecology, 2014, 102, 345-356.	1.9	108
20	Heterogeneous Rates of Molecular Evolution and Diversification Could Explain the Triassic Age Estimate for Angiosperms. Systematic Biology, 2015, 64, 869-878.	2.7	108
21	Phylogenetic relationships and character evolution analysis of Saxifragales using a supermatrix approach. American Journal of Botany, 2013, 100, 916-929.	0.8	92
22	Extinction can be estimated from moderately sized molecular phylogenies. Evolution; International Journal of Organic Evolution, 2015, 69, 1036-1043.	1.1	92
23	Habitat use affects morphological diversification in dragon lizards. Journal of Evolutionary Biology, 2010, 23, 1033-1049.	0.8	79
24	Non-equilibrium dynamics and floral trait interactions shape extant angiosperm diversity. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152304.	1.2	79
25	Leaf reflectance spectra capture the evolutionary history of seed plants. New Phytologist, 2020, 228, 485-493.	3.5	72
26	PHRAPL: Phylogeographic Inference Using Approximate Likelihoods. Systematic Biology, 2017, 66, 1045-1053.	2.7	59
27	Repeated evolution of tricellular (and bicellular) pollen. American Journal of Botany, 2014, 101, 559-571.	0.8	53
28	Speciation with Gene Flow in North American <i>Myotis </i> Bats. Systematic Biology, 2017, 66, syw100.	2.7	50
29	Can we build it? Yes we can, but should we use it? AssessingÂthe quality and value of a very large phylogeny ofÂcampanulid angiosperms. American Journal of Botany, 2018, 105, 417-432.	0.8	45
30	Sharing and re-use of phylogenetic trees (and associated data) to facilitate synthesis. BMC Research Notes, 2012, 5, 574.	0.6	42
31	Past, future, and present of stateâ€dependent models of diversification. American Journal of Botany, 2016, 103, 792-795.	0.8	39
32	Developmental evolution of flowering plant pollen tube cell walls: callose synthase (CalS) gene expression patterns. EvoDevo, 2011, 2, 14.	1.3	38
33	Phylotastic! Making tree-of-life knowledge accessible, reusable and convenient. BMC Bioinformatics, 2013, 14, 158.	1.2	33
34	A flexible method for estimating tip diversification rates across a range of speciation and extinction scenarios. Evolution; International Journal of Organic Evolution, 2022, 76, 1420-1433.	1.1	26
35	Reef fish functional traits evolve fastest at trophic extremes. Nature Ecology and Evolution, 2019, 3, 191-199.	3.4	23
36	Retiring "Cradles―and "Museums―of Biodiversity. American Naturalist, 2022, 199, 194-205.	1.0	22

#	Article	IF	Citations
37	<i>MonoPhy</i> : a simple R package to find and visualize monophyly issues. PeerJ Computer Science, 0, 2, e56.	2.7	22
38	Hidden Markov Models for Studying the Evolution of Binary Morphological Characters. , 2014, , 395-408.		17
39	Modelling Stabilizing Selection: The Attraction of Ornstein–Uhlenbeck Models. , 2014, , 381-393.		16
40	The Xeromphalina campanella/kauffmanii complex: species delineation and biogeographical patterns of speciation. Mycologia, 2015, 107, 1270-1284.	0.8	16
41	Mitochondrial genome primers for Lake Malawi cichlids. Molecular Ecology Resources, 2013, 13, 347-353.	2.2	15
42	Diversity and skepticism are vital for comparative biology: aÂresponse to Donoghue and Edwards (2019). American Journal of Botany, 2019, 106, 613-617.	0.8	15
43	Associations Between Eating Occasion Characteristics and Age, Gender, Presence of Children and BMI Among U.S. Adults. Journal of the American College of Nutrition, 2014, 33, 315-327.	1.1	14
44	Objective choice of phylogeographic models. Molecular Phylogenetics and Evolution, 2017, 116, 136-140.	1.2	13
45	RBrownie: an R package for testing hypotheses about rates of evolutionary change. Methods in Ecology and Evolution, 2011, 2, 660-662.	2.2	11
46	Population Genetics Based Phylogenetics Under Stabilizing Selection for an Optimal Amino Acid Sequence: A Nested Modeling Approach. Molecular Biology and Evolution, 2019, 36, 834-851.	3.5	11
47	Investigating the performance of AIC in selecting phylogenetic models. Statistical Applications in Genetics and Molecular Biology, 2014, 13, 459-75.	0.2	10
48	Evolutionary models for the retention of adult–adult social play in primates: The roles of diet and other factors associated with resource acquisition. Adaptive Behavior, 2015, 23, 381-391.	1.1	10
49	Gene expression of functionally-related genes coevolves across fungal species: detecting coevolution of gene expression using phylogenetic comparative methods. BMC Genomics, 2020, 21, 370.	1.2	10
50	The ontogeny of personality traits in the desert funnelâ€web spider, <i>Agelenopsis lisa</i> (Araneae:) Tj ETQq0	0 0 rgBT /	Overlock 10 T
51	<i>AnnotationBustR</i> : an R package to extract subsequences from GenBank annotations. PeerJ, 2018, 6, e5179.	0.9	9
52	Reol: R interface to the E ncyclopedia of L ife. Ecology and Evolution, 2014, 4, 2577-2583.	0.8	5
53	Unlocking a signal of introgression from codons in Lachancea kluyveri using a mutation-selection model. BMC Evolutionary Biology, 2020, 20, 109.	3.2	5
54	Morphogenera, monophyly, and macroevolution. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, E97-8; author reply E99-100.	3.3	4

#	Article	IF	CITATIONS
55	Zanne et al. reply. Nature, 2015, 521, E6-E7.	13.7	3
56	On the Matrix Condition of Phylogenetic Tree. Evolutionary Bioinformatics, 2020, 16, 117693432090172.	0.6	3
57	Phylotastic: Improving Access to Tree-of-Life Knowledge With Flexible, on-the-Fly Delivery of Trees. Evolutionary Bioinformatics, 2020, 16, 117693431989938.	0.6	2
58	A Spatially Explicit Model of Stabilizing Selection for Improving Phylogenetic Inference. Molecular Biology and Evolution, 2021, 38, 1641-1652.	3.5	1